Ultra-short, Ultra-High Brightness Electron Beams for Single-Spike FEL Operation J.B. Rosenzweig UCLA/URLS/INFN in SPARC(X)-UCLA collaboration

Ultra-short FEL pulses

- Investigations at atomic *electron* spatiotemporal scales
 - Angstroms-nanometers (~Bohr radius)
 - Femtoseconds (electronic motion, Bohr period)
- 100 femtoseconds using standard techniques
- Many methods proposed for the fsec frontier
 - Slotted spoiler; ESASE; two stage chirped pulse
 - Unsatisfactory (noise pedestal, low flux, etc.)
 - Unproven
- Use clean ultra-short electron beam
 - Myriad of advantages in FEL and beam physics

Slotted spoiler method

Slot in chicane center (high dispersion)

• Problems:

- Wakes (spoiler and "standard"),
- spontaneous background
- Beam not higher brightness...

Two-Stage Chirped-Pulse Seeding

- Still backgrounds, large pedestal
- Collective effects from entire beam

Enhanced SASE

10 7.5

- -6 -4 -2 0 2 4 6Time (fs)
- Modulation at $\sim \mu m \lambda$
- Pulse train of spikes
- FEL ρ enhanced by ~2
- Still full beam, backgrounds...

A new path: ultra-low charge electron beam

- Excellent phase space (⊥ and ||)
 - Very low emittance
 - Highly compressible
- Ultra-short beam
 - Very high brightness
 - Bunch ~ cooperation length; super-radiant single spike
 - Short cooperation length; femtosecond pulse
 - Clean, ultra-short pulse
- Mitigate collective effects dramatically
 - CSR instability
 - Undulator beam-pipe wakes

Working backwards: FEL requirements

1D dimensionless gain parameter

 $\rho_{1D} = \left[\frac{JJ(K_{rms})K_{rms}k_p}{4k_{\mu}}\right]^{2/3}$

• 1D gain length $L_{g,1D} = \frac{\lambda_u}{4\pi\sqrt{3}\rho_{1D}}$ • Cooperation length $L_{c,1D} = \frac{\lambda_r}{4\pi\sqrt{3}\rho_{1D}}$ • Single spike operation

$$\sigma_{b,SS} < 2\pi L_{c,1D} = \frac{\lambda_r}{2\sqrt{3}\rho_{1D}}$$

Numerical example: SPARX

- Take 2 GeV operation, "standard undulator", λ=3 nm
- Peak current *I*=2 kA, $\rho_{1D} = 1.8 \times 10^{-3}$
- Estimate single spike condition:

 $\sigma_{b,SS} = 0.48 \ \mu m \ (1.6 \ fsec)$

- Note: with ultra-small Q, ρ is enhanced
 - Spike is a bit shorter…
 - FEL gain better

Compression scaling

• Beam momentum distribution in ζ , ignoring slice spread $p_{z}(\zeta) \approx p_{\max} \sin(k_{RF}\zeta) \approx p_{0} \left[1 - \cot(\phi_{0})k_{RF}\delta\zeta - \frac{1}{2}(k_{RF}\delta\zeta)^{2}\right]$ Quadratic term no longer dominant • Include uncorrelated term $\sigma_{\delta p, th} = \sqrt{\delta p_{th}^2} / p_0$ • Moments: $\langle \delta \zeta^2 \rangle = \sigma_{\zeta}^2$ $\frac{\left\langle \delta p^2 \right\rangle}{p_0^2} = \frac{\left(k_{RF} \sigma_{\zeta}\right)^4}{2} + \cot^2(\phi_0) \left(k_{RF} \sigma_{\zeta}\right)^2 + \sigma_{\delta p, th}^2$ $\frac{\langle \delta \xi \cdot \delta p \rangle}{p} = -\sigma_{\zeta} \cot(\phi_0) (k_z \sigma_{\zeta})$

Compression with chicane

 Needed chicane essentially unchanged $R_{56} = \frac{k_{RF}\sigma_{\zeta}^{2}\cot(\phi_{0})}{\frac{1}{2}(k_{RF}\sigma_{\zeta})^{4} + (k_{RF}\sigma_{\zeta})^{2}\cot^{2}(\phi_{0}) + \sigma_{\delta p,th}^{2}} \Rightarrow \frac{1}{k_{RF}\sigma_{\zeta}^{2}\cot\phi_{0}} \frac{1}{k_{RF}\cot(\phi_{0})} = \frac{\lambda_{RF}\tan(\phi_{0})}{2\pi}$ Final bunch length/initial $\frac{\sigma_{\xi}^{*}}{\sigma_{\xi}} = \sqrt{\frac{\frac{1}{2} (k_{RF} \sigma_{\xi})^{4} + \sigma_{\delta p,th}^{2}}{\frac{1}{2} (k_{RF} \sigma_{\xi})^{4} + \sigma_{\delta p,th}^{2} + (k_{RF} \sigma_{\xi})^{2} \cot^{2}(\phi_{0})}} \cong \frac{\sigma_{\delta p,th}}{\sqrt{\sigma_{\delta p,th}^{2} + (k_{RF} \sigma_{\xi})^{2} \cot^{2}(\phi_{0})}} \cong \frac{\sigma_{\delta p,th}}{(k_{RF} \sigma_{\xi}) \cot^{2}(\phi_{0})}$ "Thermal" spread from velocity bunching $\sigma_{\delta p,th} \cdot p_0 = 30 \left[Q(pC)^{1/3} \right] \text{ keV/c} \text{ (from simulation)}$ • Simple in low Q limit $\sigma_{\zeta}^* \cong \frac{\sigma_{\delta p,th}}{k_{PF} \cot(\phi_0)} \cong 4.8 \times 10^{-3} \frac{\lambda_{RF} (m) Q (pC)^{1/3}}{p_0 (MeV) \cot(\phi_0)}$

Main example: SPARX

Compression at 2 GeV before undulator
Need σ^{*}_ξ ≅ 480 nm
Choose to accelerate 23° forward of crest
Deduce upstream beam of σ_ξ = 9 μm

Must produce from velocity buncher

Check consistency with energy spread

σ_{δp} ≅ cot(φ₀)(k_zσ_ξ) << ρ_{1D}
We have σ_{δp} ≅ 2.1×10⁻⁴ << ρ_{1D} (>1.8×10⁻³)

- Final energy comp. OK (not in LCLS case)

Photoinjector scaling

Low charge working point

• Velocity bunching gives $\sigma_{\xi} \simeq \sigma_0 Q(nC)^{1/3}$ Space charge limit on long. dynamics • Need $\sigma_0 \approx 10\sigma_{\varepsilon} \approx 90 \ \mu m \ (0.3 \ psec)$ Not that short... factor of 10 below present Work at Q=1 pC (factor of 10³) Emittance > compensated value Thermal plus ~2 growth in vel. Buncher • Higher brightness beam in the end!

Beam simulations for 1 pC case (UCLA PARMELA)

Summary

Charge	1 pC (6.2E6 electrons)
Laser pulse length (full)	1 psec (280 fsec rms)
Gun maximum on-axis electric field	110 MV/m
Average traveling wave section field	13.5 MV/m
Initial laser beam radius (full)	100 microns
Thermal emittance	0.033 mm-mrad
Emittance after velocity bunching	0.062 mm-mrad
Final bunch length (rms)	9 μm (28 fsec)
Energy after velocity bunching section	17.9 MeV
Final relative momentum spread	0.31%

Beam envelope evolution

Emittance evolution

Compression at SPARX

- SPARX example, compress at 2 GeV, $\sigma_{\delta p} = 2.4 \times 10^{-4}$
- **Compressor:** $R_{56} \approx 1.7 \text{ cm}$ $\theta_b = 25 \text{ mrad}$
- Analytical est. of growth in ε , $\sigma_{\delta p}$: $\Delta \sigma_{\delta p} \approx 10^{-5}$ $\Delta \varepsilon_n \approx 6 \times 10^{-9}$ m-rad
- With l=260 A, and $\varepsilon_n = 6.2 \times 10^{-8}$ m-rad

 $B = 1.35 \times 10^{17} \text{ A/m}^2$ Two orders of magnitude enhanced

Genesis simulation of SPARX

Standard case

Undulator wavelength λ_u	2.8 cm
Undulator strength K_{rms}	1.516
Resonant wavelength λ_r	3 nm
Focusing β -function	12.5 m
Dimensionless gain parameter ρ_{1D}	2.3×10^{-3}

Start-to-end from PARMELA/Elegant

Do *not* take advantage of lower ε by changing β to evade diffraction "Z_R" = 4πσ_x²/λ_r = 83 cm
Single spike operation!

FEL peak power

Bunching at fundamental

Well saturated, ~uniform

Power profile

- 220 MW peak power (/10 from standard)
- <1.5 femtosecond rms pulse!!!</p>
 - LCLS simulations show 300 attoseconds...
- Narrower than e-beam

Power evolution

- Vertical z
- Horizontal ζ
- Extremely clean pulse

Spectral properties

 Nearly bandwidth limited at onset of saturation

 $\sigma_{\omega}\sigma_t = 1.2$

Conclusions; future work

- Very promising option
 - Extended for LCLS at 1.5 Å (Reiche talk); XFEL
 - Excellent emittance and gain; can allow shorter λ
- Marry to "blowout regime" injector; shorter beams
- Excellent beam scenario, but...
- All measurements change
 - Low energy similar to electron diffraction scenario
 - Coherent optical signals at high energy
- Clean up noise
 - Dark current has much more charge
 - Natural focusing; may use dual deflector/collimator
- 1st test possible at SPARC (vel. bunching only)
 - Beam dynamics of 1st stage compression (1 pC)
 - Scaled FEL operation

See SPARX note (below); PRL (v. soon)

Generation of Ultra-Short, High Brightness Electron Beams for Single Spike SASE FEL Operation

J. B. Rosenzweig, G. Andonian, M. Dunning, A. Fukusawa, E. Hemsing, P. Musumeci, B.O'Shea, C. Pellegrini, S. Reiche UCLA Department of Physics and Astronomy L. Faillace, A. Marinelli, L. Palumbo Dipartimento di Energetica, Università di Roma "La Sapienza" D. Alesini, M. Boscolo M. Ferrario, B. Spataro, C. Vaccarezza INFN-LNF, Frascati L. Giannessi, C. Ronsivalle ENEA, Frascati