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Ultra-short FEL pulses

Investigations at atomic electron spatio-
temporal scales
– Angstroms-nanometers (~Bohr radius)
– Femtoseconds (electronic motion, Bohr period)

100 femtoseconds using standard techniques
Many methods proposed for the fsec frontier
– Slotted spoiler; ESASE; two stage chirped pulse
– Unsatisfactory (noise pedestal, low flux, etc.)
– Unproven

Use clean ultra-short electron beam
– Myriad of advantages in FEL and beam physics



Slotted spoiler method

Slot in chicane center (high dispersion)
Problems:
– Wakes (spoiler and “standard”),
– spontaneous background

Beam not higher brightness…



Two-Stage Chirped-Pulse Seeding

Still backgrounds, large pedestal
Collective effects from entire beam



Enhanced SASE

Modulation at ~µm 

Pulse train of spikes
FEL  enhanced by ~2

Still full beam, backgrounds…



A new path: ultra-low charge
electron beam

Excellent phase space (  and ||)
– Very low emittance
– Highly compressible

Ultra-short beam
– Very high brightness
– Bunch ~ cooperation length; super-radiant single spike

– Short cooperation length; femtosecond pulse

– Clean, ultra-short pulse

Mitigate collective effects dramatically
– CSR instability
– Undulator beam-pipe wakes



Working backwards:
FEL requirements

1D dimensionless gain parameter

1D gain length
Cooperation length
Single spike operation
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Numerical example: SPARX

Take 2 GeV operation, “standard
undulator”, =3 nm

Peak current I=2 kA,

Estimate single spike condition:

Note: with ultra-small Q,  is enhanced
– Spike is a bit shorter…

– FEL gain better

1D =1.8 10 3

b,SS = 0.48 µm (1.6 fsec)



Compression scaling

Beam momentum distribution in ,
ignoring slice spread

Quadratic term no longer dominant
Include uncorrelated term
Moments:
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Compression with chicane

Needed chicane essentially unchanged

Final bunch length/initial

“Thermal” spread from velocity bunching

Simple in low Q limit
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Main example: SPARX

Compression at 2 GeV before undulator
Need              nm
Choose to accelerate 23° forward of crest
Deduce upstream beam of
– Must produce from velocity buncher

Check consistency with energy spread

– We have
– Final energy comp. OK (not in LCLS case)

* 480

= 9 µm

p cot 0( ) kz( ) << 1D

p 2.1 10 4 << 1D   >1.8 10 3( )



Photoinjector scaling

Change beam Q while keeping plasma
frequency (n and aspect ratio) same
Dimensions scale
– Shorter beam…

Emittances:

At low Q, x,th dominant in Ferrario WP

With optimized low Q vel. bunching

i Q1/ 3
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Low charge working point

Velocity bunching gives
– Space charge limit on long. dynamics

Need
– Not that short… factor of 10 below present

Work at Q=1 pC (factor of 103)

Emittance > compensated value
– Thermal plus ~2 growth in vel. Buncher

Higher brightness beam in the end!

0 10 90 µm (0.3 psec)

0Q nC( )
1/ 3



Beam simulations for 1 pC case
(UCLA PARMELA)

Summary

Charge 1 pC (6.2E6 electrons) 
Laser pulse length (full)  1 psec (280 fsec rms) 
Gun maximum on-axis electric field  110 MV/m 
Average traveling wave section field 13.5 MV/m 
Initial laser beam radius (full)  100 microns 
Thermal emittance  0.033 mm-mrad 
Emittance after velocity bunching 0.062 mm-mrad 
Final bunch length (rms) 9 m (28 fsec)  
Energy after velocity bunching section 17.9 MeV 
Final relative momentum spread 0.31% 
 



Beam envelope evolution
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Emittance evolution
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Still very small, optimization not guaranteed



Compression at SPARX

SPARX example, compress at 2 GeV,
Compressor:
Analytical est. of growth in , p:
With I=260 A, and
–                                      Two orders of magnitude enhanced

0

50

100

150

200

250

300

-15 -10 -5 0 5 10 15

I 
(A

)

t (fsec)
 

n = 6.2 10 8  m- rad

B =1.35 1017  A/m 2

p = 2.4 10 4

b = 25 mradR56 1.7 cm

p 10 5
n 6 10 9  m- rad



Genesis simulation of SPARX

Standard case

Start-to-end from PARMELA/Elegant
Do not take advantage of lower  by
changing  to evade diffraction

Single spike operation!

Undulator wavelength u  2.8 cm 

Undulator strength Krms 1.516 

Resonant wavelength r 3 nm 

Focusing -function 12.5 m 

Dimensionless gain parameter 1D  2.3 10 3  

 

"ZR"= 4 x
2 / r = 83 cm



FEL peak power

 

Saturation in <30 m



Bunching at fundamental

Well saturated, ~uniform



Power profile

 

220 MW peak power (/10 from standard)
<1.5 femtosecond rms pulse!!!
– LCLS simulations show 300 attoseconds…

Narrower than e-beam



Power evolution

 

Vertical z
Horizontal 

Extremely clean pulse



Spectral properties

 

Nearly bandwidth limited at onset of
saturation

 

t =1.2



Extension to LCLS 
(non-optimized)

Interesting things happen at saturation
– Function of shorter  and Lc

S. Reiche will discuss in detail
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Conclusions; future work

Very promising option
– Extended for LCLS at 1.5 Å (Reiche talk); XFEL
– Excellent emittance and gain; can allow shorter 

Marry to “blowout regime” injector; shorter beams
Excellent beam scenario, but…

All measurements change
– Low energy similar to electron diffraction scenario
– Coherent optical signals at high energy

Clean up noise
– Dark current has much more charge
– Natural focusing; may use dual deflector/collimator

1st test possible at SPARC (vel. bunching only)
– Beam dynamics of 1st stage compression (1 pC)
– Scaled FEL operation



See SPARX note (below); PRL (v. soon)


