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1. Introduction

In usual classical FEL theory, photon recoil momentum is neglected
and electron-light momentum exchange is continuous.

Mhen classical momentum spread (yyzmcp) << one-photon recoil momentum(@

— — mc
ie. o <<l where 0 = #R'O

then FEL dynamics changes dramatically,
as now the discrete nature of the electron-radiation
\ momentum exchange becomes significant. /

Quantum FEL regime has several interesting and potentially useful features
e.g. extremely narrow linewidth
Quantum entanglement between recoiling electrons and radiation

\_ )

What are fundamental differences between harmonic generation
in a classical FEL and a quantum FEL ?



2. Classical Harmonic Generation - recap

Classical planar wiggler FEL equations are :
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2. Classical Harmonic Generation — Linear Theory

Performing a linear analysis of these equations and looking for solutions
o exp(iﬂZ) one obtains the dispersion relation.

A —héX +hF,’ =0

So looking for roots with Im(\)<O we find regions of instability/growth:
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Maximum growth at 6=0
for fundamental and harmonics

Growth rate decreases
as h increases

Regions of growth for harmonics lie within that for fundamental



2. Classical Harmonic Generation — Nonlinear Regime

Solving classical equations for h=1,3,5 numerically for 6=0 :
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Fundamental and harmonics evolve simultaneously
Fundamental dominates interaction unless disrupted

Peak intensity decreases with harmonic number



3. Quantum Harmonic Generation — Model

Similar procedure as described in previous talks i.e.
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3. Quantum Harmonic Generation — Model

Assuming electron _ - —
wavefunction is periodic in 0 : W(0,z) = Z Ch (z)e

n=-—00

Ic, |2 = Probability of electron having momentum n(hk)

Only discrete values of momentum are possible :  p,=n (k) , n=0,%x1,..
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3. Quantum Harmonic Generation — Linear Theory

Performing a linear analysis of quantum equations and looking for solutions
o exp(i/ﬁ) one obtains the dispersion relation.

(A- hé)[/lz +hF,°> =0

quantum term
significant when p<1

So looking for roots with Im(\)<0 we find regions of instability/growth:

For p>>1 we obtain result from Hulvs]
classical model

e.g. p=10, a,=1




3. Quantum Harmonic Generation — Linear Theory

(A - hé)[/lz +hF,’> =0

quantum term
significant when p<1

For p<1 (quantum regime) regions of instability change substantially
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3. Quantum Harmonic Generation — Nonlinear Regime

Classical case
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Field evolves as from solution of classical equations.
All harmonics evolve simultaneously — fundamental dominates

Many momentum states participate.



3. Quantum Harmonic Generation — Nonlinear Regime

In quantum case, each harmonic can be excited independently as
regions of instability are separated in frequency.
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Fundamental evolves as sech? pulse, but h=3,5 are not amplified
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Only momentum states n=0 and -1 participate, @
emitting and reabsorbing photon with momentum hk



3. Quantum Harmonic Generation — Nonlinear Regime
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3 harmonic now evolves as sech? pulse, but h=1,5 are not amplified

0
Only momentum states n=0 and -3 participate, @ e ?
emitting and reabsorbing photon with momentum 3hk



3. Quantum Harmonic Generation — Nonlinear Regime
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5 harmonic evolves as sech? pulse, but h=1,3 are not amplified
0

Only momentum states n=0 and -5 participate, e

emitting and reabsorbing photon with momentum 5hk (=il



3. Quantum Harmonic Generation — Nonlinear Regime

Note that in quantum regime, although growth rate decreases with harmonic
number, peak intensity increases with harmonic number
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Peak intensity increases linearly with harmonic number, h

Why?



3. Quantum Harmonic Generation — Nonlinear Regime

In quantum regime, amplification of harmonic number h involves only

momentum states n=0 and n=-h.
0

............... Effectively a 2-level system

Quantum FEL equations reduce to Maxwell-Bloch equations
- analogous to an unstable pendulum (mentioned previously)
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- > h i.e. linear increase in peak intensit
Value of peak is |A| = — €. linear increase In peak intensity
"D with harmonic number

l.e. In quantum regime every electron
emits a photon of momentum h(hk) coherently



Quantum regime of FEL evolution can be very
different from the usual classical case

Also the case for harmonic generation in a planar wiggler FEL :
In classical regime, harmonics excited simultaneously with fundamental,
and fundamental dominates — growth rate and peak intensity decrease with h.

In quantum regime, can choose detuning to selectively amplify harmonics.
Growth rate decreases with h, but peak intensity
increases linearly with h due to increased momentum of
photons being emitted coherently by electrons.

Next steps?
Currently simplest possible model (ideal cold beam, 1D steady-
state etc.)

Harmonics will be more sensitive to energy spread
- can increase in harmonic intensity with h survive ?
- will require e.g. Wigner description



