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1. Introduction

In usual classical FEL theory, photon recoil momentum is neglected
and electron-light momentum exchange is continuous.

What are fundamental differences between harmonic generation
in a classical FEL and a quantum FEL  ?

When classical momentum spread (γRmcρ) << one-photon recoil momentum(k)

1<<ρi.e.

then FEL dynamics changes dramatically,
as now the discrete nature of the electron-radiation 

momentum exchange becomes significant.
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Quantum FEL regime has several interesting and potentially useful features
e.g. extremely narrow linewidth

Quantum entanglement between recoiling electrons and radiation



2. Classical Harmonic Generation - recap
Classical planar wiggler FEL equations are :
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2. Classical Harmonic Generation – Linear Theory

Performing a linear analysis of these equations and looking for solutions 
( )ziexp λ∝ one obtains the dispersion relation. 

0223 =+− hhFhδλλ

So looking for roots with Im(λ)<0 we find regions of instability/growth:

Regions of growth for harmonics lie within that for fundamental

Maximum growth at δ=0 
for fundamental and harmonics

Growth rate decreases 
as h increases

e.g. aw=1
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2. Classical Harmonic Generation – Nonlinear Regime

Solving classical equations for h=1,3,5 numerically for δ=0 :

Simultaneous growth of fundamental and harmonics

Fundamental and harmonics evolve simultaneously

Fundamental dominates interaction unless disrupted

Peak intensity decreases with harmonic number
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3. Quantum Harmonic Generation – Model
Similar procedure as described in previous talks i.e.
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Only discrete values of momentum are possible : pz= n (k) ,   n=0,±1,..

pz
k

n=1
n=0
n=-1

3. Quantum Harmonic Generation – Model

Assuming electron 
wavefunction is periodic in θ : !
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|cn|2 = Probability of electron having momentum n(k)
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3. Quantum Harmonic Generation – Linear Theory

Performing a linear analysis of quantum equations and looking for solutions 
( )ziexp λ∝ one obtains the dispersion relation. 
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quantum term
significant when ρ<1

For ρ>>1 we obtain result from
classical model

So looking for roots with Im(λ)<0 we find regions of instability/growth:

e.g. ρ=10, aw=1 
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3. Quantum Harmonic Generation – Linear Theory
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quantum term
significant when ρ<1

e.g. ρ=0.1, aw=1 

Regions of instability are now 
well separated in frequency,

centred on
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For ρ<1 (quantum regime) regions of instability change substantially



3. Quantum Harmonic Generation – Nonlinear Regime

Classical case 
0,5 == δρ

Field evolves as from solution of classical equations.

All harmonics evolve simultaneously – fundamental dominates

Many momentum states participate.

pn=|cn|2



3. Quantum Harmonic Generation – Nonlinear Regime

In quantum case, each harmonic can be excited independently as 
regions of instability are separated in frequency.
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Fundamental evolves as sech2 pulse, but h=3,5 are not amplified

pn=|cn|2

Only momentum states n=0 and -1 participate,
emitting and reabsorbing photon with momentum k
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3. Quantum Harmonic Generation – Nonlinear Regime
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3. Quantum Harmonic Generation – Nonlinear Regime
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3. Quantum Harmonic Generation – Nonlinear Regime

Note that in quantum regime, although growth rate decreases with harmonic 
number, peak intensity increases with harmonic number

δ=5 : Fundamental δ=15 : 3rd harmonic δ=25 : 5th harmonic
|A1|2max = 10 |A3|2max = 30 |A5|2max = 50

Peak intensity increases linearly with harmonic number, h

Why?



3. Quantum Harmonic Generation – Nonlinear Regime
In quantum regime, amplification of harmonic number h involves only
momentum states n=0 and n=-h.

0

-h
Effectively a 2-level system

Quantum FEL equations reduce to Maxwell-Bloch equations
- analogous to an unstable pendulum (mentioned previously)
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Can show that peak |Ah|2 occurs when |c-h|2=1

Value of peak is 
ρ
hAh =

2 i.e. linear increase in peak intensity 
with harmonic number

i.e. in quantum regime every electron 
emits a photon of momentum h(k) coherently  



4. Summary

Quantum regime of FEL evolution can be very 
different from the usual classical case

Also the case for harmonic generation in a planar wiggler FEL :
In classical regime, harmonics excited simultaneously with fundamental, 

and fundamental dominates – growth rate and peak intensity decrease with h.

In quantum regime, can choose detuning to selectively amplify harmonics.
Growth rate decreases with h, but peak intensity 

increases linearly with h due to increased momentum of 
photons being emitted coherently by electrons.

Next steps?
Currently simplest possible model (ideal cold beam, 1D steady-

state etc.)

Harmonics will be more sensitive to energy spread 
- can increase in harmonic intensity with h survive ?

- will require e.g. Wigner description


