

J.-Y. Raguin, K. Li, R. J. Bakker, A. Oppelt and M. Pedrozzi

PSI, CH-5232 Villigen, Switzerland

Frontiers in FEL Physics and Related Topics Elba Island-La Biodola, Tuscany (Italy) September 8 - 14, 2007

Contents

- Project overview
- RF Design
 - Design parameters
 - RF design
- Beam dynamics
 - Beam matching
 - Bunch shaping
- Summary

Goal: Maximum flexibility in shaping the bunch profile with minimum deterioration of the emittance

A compact XFEL for Switzerland

3

PSI XFEL Injector (schematic)

RF cavity design parameters

- Fundamental frequency of 1.5 GHz for large acceptance (beam parameters: Q = 200 pC, Δt = 40 ps)
- 2-cell design for smooth transition from diode to RF cavity (reduction of transverse RF fields)

2-frequency operation for immediate bunch compression while at the same time preserving the longitudinal bunch profile (linearization of longitudinal phase space)

- Advantages:
- Compact design
- Immediate bunch compression and linearization in one step
- Less danger of emittance dilution due to self-induced space charge fields induced by a separate 3rd harmonic cavity
- Disadvantage: Technically challenging

Two-frequency RF design

Meeting the design considerations

Straight walls case

	Fundamental	Harmonic	
Modes	TM _{010-π} (HFSS: 1,499.01 MHz)	TM _{012-π} (HFSS: 4,496.32 Mhz)	
Coupling	Coaxial	Side	
E _{on-axis, max}	43 MV/m	4.1 MV/m	
P _{in}	4.49 MW	290 kW	
β	β=2.04	β=1.05	

Tilted walls case

	Fundamental	Harmonic	
Modes	TM _{010-π} (HFSS: 1,498.90 MHz)	TM _{012-π} (HFSS: 4,496.91 Mhz)	
Coupling	Coaxial	Side	
E _{on-axis, max}	45 MV/m	4.8 MV/m	
P _{in}	4.78 MW	75 kW	
β	β=2.00	β=1.06	

Gun Layout

Beam dynamics

 The setup needs to be tuned for optimum beam matching

 The effects of the combined fundamental and harmonic mode on the emittance as well as on the particle distribution need to be studied

- Beam parameters:
- I = 5.5 A
- $\delta T = 40 \text{ ps uniform}$
- $r_{b} = 0.3 \text{ mm uniform}$

Beam dynamics

• The setup needs to be tuned for optimum beam matching

 The effects of the combined fundamental and harmonic mode on the emittance as well as on the particle distribution need to be studied

- Beam parameters:
- I = 5.5 A
- $-\delta T = 40 \text{ ps uniform}$
- r_b = 0.3 mm uniform

Results: Beam matching

Results: Beam matching

Results: Beam matching

Simulation methods for 3D particle tracking

Bunch shaping

- Parameters:
 - Injection phase
 - Phase shift
 - Amplitudes

Relative phases 0:30:330 deg

Amplitudes				
#	A _{fund.}	A _{harm.}	Ratio	
1	0.82	1.64	50.00%	
2	0.84	1.26	60.00%	
3	1	-1	-100.00%	
4	1.01	-1.52	-60.00%	
5	1.02	-2.04	-50.00%	

Injection phases					
#	Absolute	Relative			
1	120 deg	-20 deg			
2	130 deg	-10 deg			
3	140 deg	0 deg			
4	150 deg	10 deg			
5	160 deg	20 deg			

17

Example: Relative phase

20 deg bunching side off crest acceleration

Example: Amplitudes

20 deg bunching side off crest acceleration

Bunch shaping

Summary

- First two-frequency RF design completed
- Improved design for mode purity around 4.5 GHz nearly completed
- Beam matching by insertion of pulsed mini coil leading to a suppression of transverse RF effects
- Flexible shaping of longitudinal bunch profile
- Profiling the longitudinal phase space for further bunch compression possible

