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NIJI-IV FEL
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Undulator section [mm] 72 200
Dispersive section[mm] 216 720
Number of period N,, 42><2 7>2
Deflection factor K <2.29 <10.04
Wavelength [um] 0.198-0.595 (0.4-10)




CAVITY LOSS, PEAK GAIN (%)

Lasing in the NIJI-1VV FEL
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DUV/VVUV Beam line for FE L -PEEM Pnotoelectron emission microscopy
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An FEL at a wavelength of 202nm emitted from a
6.3-m optical klystron ETLOK-II was transported to
the experimental room through air and was reflected
by a flat aluminium mirror and focused onto the
sample surface.
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Optical cavity system for DUV/VUV FEL
Old system

Slender structure

The mirror manipulators were
composed of five-axis stages with
gimbal mounts containing a high-
vacuum mirror chambers each of which
has interchangeable two in-vacuum
mirrors to extend FEL tuning range.

heavy granite stone(2 ton)  Resolution: Az = 0.1um , A8=0.8prad



Degradation of dielectric mirror in the visible and UV regions
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O, plasma treatment in the visible and UV regions

Fig. 2. Schemati
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FFig. 5. Typical x-ray photoclectron spectra before and after
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Reduction of carbon contamination
after plasma treatment was confirmed
by XPS analysis.
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We already demonstrated to
TiO,/Si0,, Ta,0./Si0,, HfO,/SIO,,.

Fig. 2. Restoration of a degraded IBS mirror with plasma treatment and thermal annealing. Exposure dose to the sample was

15.9 mA h,



Mirror Loss Measurement — Cavity ring-down method 193 — 210 nm
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Mirror degradation around 200nm
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The mirror bandwidth was narrowed.= O, plasma treatment



RF-induced O, plasma treatment

To remove surface carbon contamination,
the surface was treated with O, plasma.

Restoration of degraded mirror
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After O, plasma treatment

6 | ' | ) | ) | ’ | . | . | R |

—m— initial
—o— degraded
treated with O, plasma

degraded(exposure:245mAnh)

Mirror Loss (%)

After plasma__treatment

0- ] .f ] 1 ] 1 ] 1 ] 1 ] 1 ] 1 ]

194 / a}% 198 200 202 204 206 208 210

I Wavelength (nm)

The narrowing of the mirror bandwidth disappeared and the shape of mirror loss curve was
repaired, while the absolute value was still larger.

=== yolume degradation through defect formation inside the dielectric layers.
==> thermal annealing treatment




After thermal annealing treatment
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Degradation was almost restored.
==> T0 examine the degradation mechanism due to inner defects,
we performed positron lifetime experiments.
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Result of Positron experiment
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In the UV and visible regions, the defect was completely repaired with 230-250 C annealing
== |n the DUV/VUV, annealing should be more higher temperature to repair completely.



NIJI-1V FEL-PEEM (photoelectron emission microscopy) system

NIJI-1V DUVFEL was applied to surface observation, in
combination with a PEEM system (STAIB Instrumente, type
350). This PEEM system has three sets of electrostatic electron
lenses and a micro channel plate (MCP) equipped with a
fluorescent screen. By viewing the focused images on the
fluorescent screen with a CCD camera, transient phenomena,
such as chemical reactions on transition-metal surfaces, can be
monitored with video-rate time resolution. Since the spatial
resolution of this system is 80 nm and our FEL intensity is large
enough to extract sufficient amount of photoelectrons to
recognize the surface contrasts within 33.3 msec, we can
examine real-time physical and chemical information on
transition-metal surfaces in a sub-micron scale.
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Catalytic CO oxidation (2CO + O, - 2CO,) on a Pd(111) surface

In case of Pt(110) Workfunction ¢p
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Expansion of CO domain on a Pd(111) surface
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It is supposed that the oxygen play a role in preventing a speed of CO expansion.



Observation of Cs, Te Photocathode
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Summary

Stable optical cavity system was installed for DUV/VUV
and IR FEL.

Degradation in Al,O,/S1O, mirror was studied around 200nm.
The degraded mirror was successfully restored by treatment of
O, plasma and thermal annealing.

As for FEL application study, a real-time imaging of chemical
reaction was performed with PEEM and Cs,Te photocathode
observation is now proceeding .
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