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A little bit of historyA little bit of history

• Ideal beam distributions. 
– Kapchinksy-Vladimirsky, uniformly filled ellipsoids, waterbags, pancakes 

and cigars have always helped theorists in accelerator beam physics.
– The problem is how to generate such beams in real systems

• Serafini, AIP Conf. Proc., 413, 321, (1997)
– Blow-out regime of photoinjectors. 

• Luiten et al. Phys. Rev. Lett. 93, 094802 (2004)
– No particular longitudinal shape needed

• Rosenzweig et al., Nucl. Instr. Meth., 57, 87, (2006)
– Existing hardware compatibility



What’s so special about ellipses?What’s so special about ellipses?
• Analytical field expressions

• Linear space charge fields in each direction [Kellogg, Foundation of potential 
theory, 1929].

• For a spheroid
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Pegasus laboratoryPegasus laboratory
• Small accelerator laboratory in the sub-basement of the physics 

department (joint program with Rosenzweig, Pellegrini)
• Laser room, control room, radiation shielded bunker
• Home of the first UCLA SASE FEL experiments
• Now advanced photoinjector laboratory just recently 

commissioned
– New state-of-the-art ultrafast drive laser Ti:Sa
– Currently 2 grad, 2 undergraduate students

• Initial laboratory mission:
• Study photoinjector extreme longitudinal dynamics. 
• Tests of blow-out regime. 

• Develop advanced longitudinal 
diagnostics.

• Applications of ultrafast beams.
(electron diffraction, FELs)



UltrashortUltrashort laser pulseslaser pulses
• New state-of-the-art Ti:Sa laser 

system. 
– Micra. 

• Feedback on Verdi pump 
alignment

• 100 nm bandwidth (adjustable)
• Integrated pump

– Legend-Elite
• Integrated Evolution 30
• 1 KHz rep rate
• 3.3 mJ after compression
• 35 fs FWHM 

• Ultrashort laser pulses cathode 
illumination
– Control dispersion in transport
– Thin non linear crystals

• Iris imaged onto cathode.
– Dynamics dominated by surface 

charge density on the cathode. 



Pegasus Pegasus beamlinebeamline
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Photoinjector commissioning. Spring 07Photoinjector commissioning. Spring 07
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Pegasus relativistic electron diffractionPegasus relativistic electron diffraction

• Diffraction pattern using 108 electrons with an electron beam 5 times 
shorter than current state-of-the-art.

• Not the subject of this talk (but ellipses even here.…)



RF deflectorRF deflector
• X–band cavity (9.6 GHz)
• Originally designed for a 12-15 MeV

beam. (up 500 kV deflecting voltage)
• Plug-n-play (portable rf source).

• Very good temporal resolution (< 50 fs) 
for the 4-5 MeV Pegasus beam even on 
the closest beamline screen. 

• Two independent calibration methods
– Measure power in cavity
– Measure centroid position vs. phase

• Fundamental diagnostics in low-energy 
beam line. (allow to see inside the 
beam…)

Courtesy of J. England



� Charge 17 pC

� rms length ~300 fs

� Very sharp ellipsoidal 
beam boundary due to 
the ultrashort beam on 
the cathode

Ellipsoidal beam I: projected ellipseEllipsoidal beam I: projected ellipse
Using the quadrupole to focus vertically the beam to an horizontal line
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ρp

Simulated uniformly charged ellipsoid Experimental streak

Using the quadrupole to focus the beam on the screen, we effectively obtain a two 
dimensional projection of the uniformly charged ellipsoidal distribution

Ellipsoidal beam I: projected ellipse (cont)Ellipsoidal beam I: projected ellipse (cont)
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Ellipsoidal beam II: sliced ellipseEllipsoidal beam II: sliced ellipse
Using the slit aperture to select an horizontal slice of the beam distribution



Asymmetry in ellipsoidal boundaryAsymmetry in ellipsoidal boundary

180 degrees off

� Increasing the charge we observe the development of an asymmetry in the 
ellipse boundary.

� Reversing the deflecting voltage by going 180 degrees off in phase, we obtain 
the same picture upside down.

� Simulations predict this effect, which is mainly due to the image charge at the 
cathode that pulls on the beam tail.

500 fs



Bunch length vs. QBunch length vs. Q
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• Luiten’s paper gives a simple formula for asymptotic bunch length:

• In reality we observe a more dynamical behavior.
• As the beam gets more energetic the aspect ratio in its own rest

frame is not pancake-like anymore.
• Energy spread contribution to bunch length.
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• Asymmetry depending on 
surface charge density.



Wonders of a deflecting cavityWonders of a deflecting cavity
• Inhomogeneous emission from cathode

500 fs
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Thermal emittance

Transverse Transverse emittanceemittance

• Transverse beam quality (measured with 
pepper-pot technique allowing phase 
space reconstruction) is at the thermal 
emittance level. 

• …which unfortunately is quite high (Mg 
cathode + surface roughness). Measured 
with solenoid scan. 



Longitudinal phase spaceLongitudinal phase space
• Diagnostic screen around the bend. 

– Dispersion. Horizontal axis is energy. 
– Turn deflector on. Vertical axis is time.

• Need to decrease betatron beam size at 
the diagnostics screen.

• Design shorter dipole to allow quadrupole
lenses closer to detection screen. (in 
progress)

• Aim to resolve <20 KeV uncorrelated 
energy spread (experiment in the next six 
months).
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Peak brightnessPeak brightness
• Peak brightness at low energy is very high, but not much different 

than other optimized designs (working point of current state-of-the-
art injectors).

SPARC

Pegasus

• 18 pC, 300 fs rms, 
0.7 mm-mrad.   ~1•1014 A/m2

• What is really new here is:
� Shorter beams.
� More linear phase 

spaces (transverse and 
longitudinal).

� Control beam tails.
� Ease requirements on 

laser system.



ConclusionsConclusions

• First direct observation of uniformly filled ellipsoidal beam 
distribution

• Dynamic regime. Need to take into account beam evolution. (need 
particle tracking simulations)

• Simple configuration of photoinjector yielding relatively good results.
• Clear path for improving brightness at Pegasus (higher field on 

cathode, better thermal emittance).
• Low charge, ultrashort beams are the future of photoinjectors

(ultrafast beam sourcing).
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Aspect ratioAspect ratio
• Analytical field expressions
• Linear space charge fields in each direction [Kellogg, Foundation of potential theory, 1929].

• For a spheroid
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