

... for a brighter future

1-Å FEL Oscillator with ERL Beams

Frontiers in FEL Physics and Related Topics September 8-14

Elba Island-La Biodola, Tuscany, Italy

Kwang-Je Kim, ANL Sven Reiche, UCLA Yuri Shvyd'ko, ANL

FELs for λ<1-Å Wavelengths

High-gain FEL amplifier, SASE or seeded HG, will provide an enormous jump in *peak* brightness, became realistic due to advances in gun-linac technology

– $I_P \sim \text{several kA}, \epsilon_x^n \sim 1 \text{ mm-mr beams}$

HGFEL is a promising option for future light source (FLS)

- LCLS, European X-FEL, SCSS, Fermi, Arc-en-Ciel,..

Electron beams for another option for FLS, the Energy Recovery Linacs (ERLs), promise to be extreme low-emittance and high average brightness

 $\epsilon_x^n \sim 0.1 \text{ mm-mr}, I_P \sim 4-12 \text{ A}, I_{AV} \text{ up to } 100 \text{ mA}$

- Cornell, MARS, 4GLS, KEK-JAERI, APS,..

ERLs have so far been regarded only as a spontaneous emission source

We show that an X-ray FEL Oscillator (XFEL-O) for λ <1-Å based on high energy ERL beams is feasible

Energy Recovery Linac (Courtesy of Sol Gruner)

Invented by M. Tigner (1965)

KJK, Elba, September 8-14, 2007

Cornell 5-GeV ERL Parameter Scaled to 7-GeV for APS II: G. Hoffstaetter, FLS 2006 Workshop, DESY

	APS Now	High Flux	High Coherence	Ultrashort Pulse	
Average Current (mA)	100	100	25	1	
Repetition rate (MHz)	0.3 ~ 352	1300	1300	1	
Bunch charge (pC)	0.3 ~ 60	0.077	19 (60)**	1	
Emittance (nm)	3.1 x 0.025	0.022 x 0.022	0.006 x 0.006	0.37 x 0.37	
Rms bunch length (ps)	20 ~ 70	2	2	0.1	
Rms momentum spread (%)	0.1	0.02	0.02	0.3	

**With gun optimization, the charge can be increased to 60 pC, I.V. Bazarov & C.K. Sinclair, PRSTAB,8, 0342002 (2005)

Preliminary layout view of an ERL upgrade to CHESS in the present CESR tunnel. A new tunnel with a return loop will be added to CESR. Electrons are injected into superconducting cavities at (I) and accelerated to 2.5 GeV in the first half of the main linac, then to 5 GeV in the second half. The green lines show 18 possible beamline locations. Electrons travel around the CESR magnets clockwise and re-enter the linac out of phase. Their energy is extracted and the sperti electrons are then sent to the dump (D).

Feedback-Enhanced X-Ray Sources

- X-ray FEL Oscillator (XFEL-O) using Bragg reflector was first proposed by R. Colella and A. Lucio at a BNL workshop in 1984.
- This was also the time when a high-gain FEL(SASE) was proposed by R. Bonifacio, C. Pelegrini, and L. M. Narducci (the "ρ-paper".)
- Feedback-enhanced x-ray sources using electron beams optimized for high-gain amplifiers have been studied recently:
 - Electron out-coupling scheme by B. Adams and G. Materlik (1996)
 - Regenerative amplifier using LCLS beam (Z. Huang and R. Ruth, 2006)
- We study XFEL-O using the beam parameters of Cornell ERL Coherent Mode scaled to 7 GeV

Principles of an FEL Oscillator

Small signal gain G= ∆P_{intra}/P_{intra}

- Start-up: $(1+G_0) R_1 R_2 > 1$ (R₁& R₂ : mirror reflectivity)
- Saturation: $(1+G_{sat}) R_1 R_2 = 1$

Synchronism

- Spacing between electron bunches=2L/n (L: length of the cavity)

Gain Calculation

Analytic formula for low signal including diffraction and electron beam profile

- Sufficiently simple for Mathematica evaluation if electron beam is not focused and distributions are Gaussian
- Similarly simple but approximate formula for matched electron beam in constant focusing

Steady state GENISIS simulation for general intracavity power to determine saturation power (Sven Reiche)

Saturation: As circulating power increases, the gain drops and reaches steady state when gain=loss

E=7 GeV, λ =1Å Q=19 pC (Ip=3.8A), N_u=3000 Mirror reflectivity=90% Saturation power=19 MW

E=7 GeV, λ=1Å Q=40 pC (Ip=8 A), N_u=3000 Mirror reflectivity=80% Saturation power=21 MW

Examples of Steady-State Calculation

Electrons are not focused but matched to the optical mode determined by cavity configuration (see later) σ_{τ} =2 ps, σ_{γ} =1.37, ε_{xn} =0.82 10⁻⁷m

Z_R=β*=10~12 m

λ(Å)	E(GeV)	Q	K	λ _U (cm)	N _U	G ₀	R _T	P _{sat}
		(pC)				(%)	(%)	(MW)
1	7	19	1.414	1.88	3000	28	90	19
1	7	40	1.414	1.88	3000	66	83	21
0.84	7.55	19	1.414	1.88	3000	28	90	20
0.84	10	19	2	2.2	2800	45	83	18

Simulation of Oscillator Start-up

Time-dependent oscillator simulation using GENO (GENESIS for Oscillator) written by Sven

 Taking into account FEL interaction (GENESIS), optical cavity layout, and mirror bandwidth (Reiche)

To reduce CPU

- Follow a short window (25 fs)
- Track a single frequency component for all radiation wavefronts since other components are outside the crystal bandpass
- Even with these simplifications, one pass takes about 2 hr

Electron Beam Profile

Constant cross section with a constant focusing (β_{ave} =5.6 m)

- Highest gain (~40% for low charge case (19 pC))
- However, coupling of spontaneous emission to coherent mode is strongly suppressed due to poor overlap between e-beam and mode phase space distribution

No focusing with beam waist at the undulator center ($\beta^* \sim 10$ m) and mode Rayleigh length ~ β^*

 Smewhat lessgain, but a good coupling to the coherent mode since the electron and radiation phase space shape is similar

Start-up Simulation (Reiche) 1-Å Case, 7 GeV

Effective net gain~6%

Effective net gain ~ 47%

Transverse Profile @128th Pass

Evolution of RMS Radius (GENO)

KJK, Elba, September 8-14, 2007

Bragg Mirrors

Requiring total loss per pass to be 10-20%, the reflectivity of each Bragg mirror should be well over 90%

Possible crystal candidates are

- Silicon
 - Perfect crystals exist but the reflectivity is not sufficient
- Diamond
 - Highest reflectivity & hard (small Debye-Waller reduction)
 - Multiple beam diffraction in exact backscattering except (111) and (220) (can use as a coupling mechanism?)
- Sapphire
 - High reflectivity without multiple beam diffraction
 - Small thermal expansion coefficient for T<100K and large heat conductivity at T=40K

Sapphire Reflectivity @ 14.3 keV

Sapphire Crystal Quality

Back-reflection topographs of HEMEX sapphire wafers cut from different boules show different dislocation densities:

(a) $\simeq 10^3$ cm⁻², (b) much lower dislocation density.

Sample area illuminated by x-rays is 2.1 x 1.7 mm²

Chen, McNally et al., Phys. Stat. Solidi. (a) 186 (2001) 365

Sapphire X-ray Resonator Demonstrated Experimentally

KJK, Elba, September 8-14, 2007

Focusing Elements

- Focusing is required to adjust the mode profile
- Bending the Bragg mirrors for a desired curvature (~50m)
- However, bending may destroy high-reflectivity
 - P. Suortti et al, J. Appl. Cryst. 19 (1986) 336

Possible options:

- Grazing-incidence, curved-mirrors for non backscattering configuration
- Compound refractive lenses of high transmissivity can be constructed (B.Lengeler, C. Schroer, et. Al., JSR 6 (1999) 1153)

Options for XFEL-O Cavities (Y. Shvyd'ko)

 $AI_2O_3xAI_2O_3$ @14.3 keV R_T=0.87, G_{sat}=15%, T=3%

CxCxmirror @12.4 keV RT=0.91, G_{sat}=10%, T=4%

Crystal Damage/Heat Loading Issues

Peak power absorbed P_{peak}< 1 MW (Compare P_{peak}= 1 GW for X-ray Regen . Huang and Ruth find that this is 100 times smaller than the melting threshold)

■ Thermal loading: P_{av}< 10 W
→ Temperature at the hot spot is estimated to be <35° compared to 25° at the side (A. Khounsary)

Energy Acceptance of the Recirculation-Pass for APS-ERL

- GENESIS simulation shows that the rms energy spread increases from 0.02% to 0.05% after the FEL interaction
- The ERL return pass can accommodate 0.05% energy spread

Photon Performance of XFEL-O

- **Wavelength: 1-Å or shorter,** ε_{γ} =12.4 keV or higher
- Full transverse and temporal coherence in 1 ps duration
 - $\Delta v / v$ =0.3 10⁻⁶ ; h Δv =4 meV
- Not Tunable
- 10⁹ photons (~ 1 μJ) /pulse
 - Peak spectral brightness~LCLS
- Minimum rep rate is 1 MHz, the maximum could be 100 MHz limited by crystal heat load→ average spectral brightness 10²⁷ (→10²⁹) ph/(mm-mr)²(0.1%BW)
- The average brightness is higher by a factor of
 - 10⁵-10⁷ than other future light sources considered so far, ERLbased or high-gain FEL-based
 - Current APS about 100-1000 less than ERL

Science Drivers for XFEL-O

- Inelastic x-ray scattering (IXS) and nuclear resonant scattering (NRS) are flux limited experiments! Need more spectral flux in a meV bandwidth!
- Undulators at storage rings generate radiation with ≈ 100-200 eV bandwidth. Only ≈ 10⁻⁵ is used, the rest is filtered out by meV monochromators.

Presently @ APS: $\approx 5 \times 10^9$ photons/s/meV (14.4 keV)

XFEL-O is a perfect x-ray source for:

- high-energy-resolution spectroscopy (meV IXS, neV NRS, etc.), and
- imaging requiring large coherent volumes.
- Expected with XFEL-O ≈ 10¹⁵ photons/s/meV (14.4 keV) with 10⁷ Hz repetition rate.

Concluding Remarks

- A XFEL-O around 1-Å is feasible with beams expected from future ERLs
- It is a powerful addition to ERL capabilities
- Application areas: nuclear resonance scattering, coherent imaging, inelastic scattering,...
- This study is an initial exploration with much room for further optimization.

Comments by Fulvio Parmigiani during the Workshop

- Rep rate >1 MHz important for statistics, avoiding Coulomb repulsion, etc
- Application to study Fermi surface of bulk materal

