Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H.

ESSY

Nonlinear Harmonic Generation in the STARS FEL

K. Goldammer, BESSY

STARS design group:

M. Abo-Bakr, W. Anders, J. Bahrdt, K. Bürkmann, P. Budz, O. Dreßler, H. Dürr, V. Dürr, W. Eberhardt, S. Eisebitt, J. Feikes, R. Follath, A. Gaupp, R. Görgen, K. Goldammer, S. Heßler, K. Holldack, E. Jaeschke, T. Kamps, S. Klauke, J. Knobloch, O. Kugeler, B. Kuske, P. Kuske, D. Krämer, F. Marhauser, A. Meseck, R. Mitzner, R. Müller, A. Neumann, M. Neeb, K. Ott, D. Pflückhahn, T. Quast, M. Scheer, T. Schroeter, M. Schuster, F. Senf, G. Wüstefeld

From BESSY Soft X-Ray FEL to STARS

Overview STARS FEL

- normal conducting PITZ-type gun
- three sc TESLA-type acceleration modules
- 3rd harmonic cavity
- magnetic bunch compression
- collimator

- two HGHG stages with modulator, dispersion, radiator. Fresh bunch chicane.

-> conservative, robust design
-> concentrate on demonstration of
HGHG cascading

Parameter	Value	Unit
Beam energy	325	MeV
Bunch charge	1	nC
Peak current	500	А
Bunch rep. rate	100	Hz
Slice emittance	1.5	mm mrad
Slice energy spread	<32	keV
Accelerating gradient	17.2	MV/m
HGHG stages	2	
Wavelength range	40-70	nm
Output power	100-1000	MW

STARS facility

Demonstration of cascaded HGHG

- stable FEL operation

ESSY

- wavelength range below 100nm
- variable polarization output
- reproducible, short pulses

Test of BESSY FEL technology

- superconducting RF
- high rep rate operation of gun and linacs (1kHz)
- seeding and timing

Undulator section of STARS FEL

Electrons 325 MeV

Modulator 1, Radiator 1 (and Modulator 2)

- planar undulators
- undulator period length 50 mm
- minimal gap 10-20 mm

Radiator 2 configured as APPLE III undulator

- high field
- variable field polarization
- wide resonance tuning range
- minimal gap 7 mm

Output of STARS FEL

several hundred

MWs to GWs

Electrons 325 MeV

Output varies between ~100MWs and GWs (superradiance)

- three undulator modules
- 150 periods
- period length 2.2cm
- radiation source point variable along radiator

Simulations show that cascaded HGHG can be demonstrated at 70nm without 3rd harmonic cavity.

Requirements met. Everything else is optional - but very interesting:

Output of STARS FEL

Electrons 325 MeV

Output varies between ~100MWs and GWs (superradiance)

- three undulator modules
- 150 periods
- period length 2.2cm
- radiation source point variable along radiator

Shorter Wavelengths

Harmonic Content at 66nm

Output at 66nm, planar ("power optimized")

- simulations with new version of Genesis 1.3

(S. Reiche et al, PAC07)

- start-to-end bunch from tracking through gun, linac and undulator
- FEL simulation stopped after first undulator module of radiator 2

Har- monic	Power (MW)	Energy (μJ)
1	330	9.35
3	8	0.11
5	0.25	0.009

Harmonic Content at 50nm

Output at 50nm, planar ("power optimized")

- simulations with new version of Genesis 1.3
- start-to-end bunch from tracking through gun, linac and undulator
- FEL simulation stopped after first undulator module of radiator 2

Har- monic	Power (MW)	Energy (μJ)
1	300	6.13
3	4	0.05
5	0.18	0.004

Harmonic Content at 40nm

Harmonic Content HHG seeded case at 32nm

HHG seeding, 32nm, planar

- 23rd harmonic of 740nm laser

- HHG pulse simulated with new code RHYNO

(T. Leitner, Diploma Thesis 2007)

simulation assumes:

- Gaussian shape laser
- 30fs FWHM duration
- waist size 17.6 μm

Har- monic	Power (MW)	Energy (μJ)
1	1300	14.9
3	13	0.07
5	0.25	0.001

Summary

STARS: Proposal for a two-stage HGHG FEL

- demonstration of multistage HGHG
- and more:

investigation of nonlinear harmonics, HHG seeding test and learn gun and linac operation, timing, seeding

Output and experiments

- short pulse (20fs) short wavelength radiation (40-70nm)
- output power in range of 100MW to 1GW
- STARS planned as user-facility after BESSY FEL is built:

e.g. for experiments usually conducted with HHG, example: molecular photoionization

Harmonic content

- third harmonic radiation with several MWs available at 13 to 20nm with pulse energies in range of 0.01 to 0.1 μ J. Very short pulse duration (10-15fs).

- HHG seeding and harmonics very promising to reach coherent short wavelength radiation.