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Motivation

Is on-axis NHG in FELs with
helical wiggler suppressed ?

Answer important for both main FEL development path

NHG is beneficial for X-ray SASE sources

NHG is a detrimental effect for high average power
oscillators (UV harmonics damage to mirrors)

Answer in literature 1: on-axis NHG is strong
Our answer: on-axis NHG is suppressed

[1] H.P. Freund et al. PRL 94, 074802 (2005)



Contents

In this talk | will

1. Describe our theory of NHG in FELs with helical wi  gglers
2. Treat a particular example-case

3. Explain why, in our view, literature is incorrect
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Maxwell equations

Space-frequency domain

We are Iinterested in solving Maxwell
Equations in paraxial approximation
with respect to the F.T. of the field E(w)
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Maxwell equations

Space-frequency domain
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Solution of paraxial equation on-axis

Far zone solution of paraxial Maxwell equation on-a  Xis:
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Solution of paraxial equation on-axis

Far zone solution of paraxial Maxwell equation on-a  Xis:
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Far zone solution of paraxial Maxwell equation on-a  Xis:

Slowly varying function of z’ over A,



Solution of paraxial equation on-axis

Far zone solution of paraxial Maxwell equation on-a  Xis:

La/2
I K

E =— [diﬁ [ dz"ﬁ(z',f_’})exp [iChz']

Cip

d

_|_

L2

K (exp[i(h + 1Dkypz'] = explith — 1)?11@;13'])] Cy

2iy
|

_25( expli(t + 1)ky2] + expli(h — Dky2'])
y'

Only h=1 survives, on axis.
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Why second harmonic? Only as a particular case.
Similar reasoning holds for all harmonics.
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Simple model

To get further results, we need to treat a particul  ar case
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Simple model

To get further results, we need to treat a particul  ar case
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Simple model: Il harmonic directivity diagram
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Simple model: II harmonic power

[.-T.-*'E = W /W,
1

W = Fy(N) = In (1 + m)
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Criticism to literature
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E(F,t)=E [{& +i&)explig] ¢ =kz+hf-at wave phase
0 = kWZ Azimuthal electron motion in helical wiggler
—> Phase along ptc trajectory: (K+hk )z —at

Azimuthal resonant condition (literature)

K+hk —c/v, =0



Criticism to literature

"The azimuthal electron motion in helical wigglers is
0 = k,z (k, is the wave number for the wiggler period
Aw ). which couples to circularly polarized waves that vary
as exp(ioy ), where ¢, = kz 4+ hf — wt is the wave phase.
Hence. the phase along the particle trajectories varies
as op = (k+ hk,)z — wt, and the hth order azimuthal
mode corresponds to the hth harmonic resonance [i.e.,
wa (k+ hky)v.|" w

[1] H.P. Freund et al. PRL 94, 074802 (2005)
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