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The “Bottom Line”: A (relatively) simple method to produce
synchronized, fs-duration pulses in the XUV

Ingredients: few-cycle optical pulse + reasonable e-beam (1 kA, 1-2
GeV, ~1 mm-mrad) + 10-20 m of undulator

0.5 - 1 GW output pulses with 1,,,~ 2 fs or less

Output temporally synchronized with optical pulse

Scales smoothly from 2 to 32 nm

Works with both SASE and external seeded input (multi-MW class)

Contrast extremely good --- output is redshifted by 2% or more ->
spectral filtering will give more contrast

Interesting wavelength chirp over ultrashort pulse
Both shift and chirp are adjustable (including sign)

Easy to make a pulse train with uniform separation
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The Usefulness of XUV/Soft X-ray Short Pulses

e Proclaiming the usefulness of short pulses for many
applications is like praising apple pie and motherhood

Nonetheless, some examples include:

e Coherent XUV imaging --- works better at 2 fs than 15 fs
(less hydro expansion)

. (absorption,
fluorescence, Auger processes) of Co, Mn, Fe at 1-keV

. of materials with “long”
timescales (> 1 fs) (but still short relative to 100 fs)

« Time-resolved studies of the dynamics and reaction
rates of chemical radicals

Thanks to F. Parmigianni




FIRST FLASH DIFFRACTION IMAGE OF A LIVE PICOPLANKTON

Thanks to J.Hajdu and H. Chapman
March 2007 via F. Parmigianni

FLASH soft X-ray laser, DESY

X-ray pulse length: 10 fs
Wavelength: 13.5 nm

RECONSTRUCTED
CELL STRUCTURE

Filipe Maia, Uppsala

J. Hajdu, I. Andersson, F. Maia, M. Bogan, H. Chapman, and the imaging collaboration
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Spokespersongd:. Moller, C. Bostedt (TU-Berlin)
Co-proponents: P. Milani, University of MilanoJd.
Hajdu, University of Stanford and University of Wga H.N. Chapman, LLNL, Livermore

Courtesy F. Parmigianni, U. Trieste & FERMI




Many Short Pulse FEL Schemes rely upon Rapid y(t) Variation

Electric field strength [arb.units]

As A. Zholents explained in his talk on Tuesday, there are
numerous schemes to exploit the high power and short duration
of few cycle, intense optical pulses via interaction with an e-beam
in a short undulator (e.g., energy modulation, tilt modulation)

Saldin, Yurkov, and Schneidmuller ( PRSTAB 9, 050702 (2006) )
published a particularly clever scheme to use both y(t) variation
together with to produce
“attosecond” duration pulses in the hard x-ray regime
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Saldin et al. reverse taper scheme applied to SASE XFEL

time). The energy chirp parameter

Note asymmetry w.r.t. d for power
at z/Lg=13 with negative d )/dt giving
more power and max P at a =+0.2

Previously found by H.-D. Nuhn and
rediscovered/explained by Huang
and Stupakov

Layout & Components
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FIG. 4 Schematic diagram of the attosecond x-ray source. The
energy modulator performs slice energy modulation of the
electron bunch (see Fig. 6). The undulator tapering leads to
complete suppression of the amplification process in the largest
fraction of the electron bunch, and the output x-ray pulse has 2
attosecond pulse duration.

XFEL: 12 kA, 15 GeV, 1 MeV ¢, 1.4 mm-mrad, A,=3.65 cm
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Underlying Principles of Scheme

FEL gain curve narrow at a given w: Ayly[p

If y (or a,) vary too rapidly with z, gain can be suppressed

— A slight positive dy,/dz (e.g., from wakefields) can enhance SASE gain
(Nuhn, Huang & Stupakov, Saldin et al.)

— External energy losses (e.g., wakefields, spontaneous emission) can be
balanced by a negative

As seen by a radiation “spike”, slippage converts a z-derivative in

undulator property to a time-derivative of the properties of the e-
beam gain media

“Upstream” energy modulation by a few cycle optical laser can
create a very large dy/dt locally in time

: dy o :
Balancing local by proper maximizes gain

locally in t; condition is dinay, =1dlny(1+a§\,]£

iz c dt | a2 A
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Only a small portion of e-beam has the correct energy chirp

Good dy/dt match to +dK/dz taper, Slippage advances photons leftwards
very strong gain . from e-beam tail towards e-beam head

* Normalized width of FEL gain
curve in yis ~ py
p typically 1-2 x 10-3
Change with z of resonant y by
~0.5 pyin one gain length
strongly suppresses gain
Gain suppression (absorption
at some t) is somewhat
antisymmetric: best either if
actual yis reduced with z via
external field _
K (and thus y;) is increased Time (fs) '\ \

with z
No match to taper, +dKC/(c)Imthetely l:nmatcged tc;_
little gain, some absorption Z taper, strong ansorption
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E-beam, Optical Laser, Undulator Parameters

e E-beam: 2 GeV, 1 kA, matched 3=4 m, 0,=200 keV, €=0.5 mm-mrad
(parameters used in LBNL future light source investigations)
(low emittance really only needed for shortest A )
—ry, ~ 30 microns; FEL for A\q =8 nm

» After some empirical investigation,
—chose A,,,=2200 nm (helps increase gain by decreasing slippage relative to
A=800 nm possibility)
modulation =
—for A; = 8nm and A, =30 mm, a,, = 2.7 (linear polarization)
—found “best” undulator taper was 3.5% / 10-m (simple linear);
balance condition would predict 3.25% / 10-m

 To keep a,, and taper rate constant with A, scaled A, O A
—this also keeps slippage rate (e.g., fs/m) and req. constant

» Time-dependent GINGER simulations (2 1/2 D + t)

—Simulation window typical 5 to 9 x A
—Temporal resolution ~ 60 to 100 attoseconds
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Output power vs. E_modulation
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Output Spectra vs. E_mod (seeded at 8 nm)
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Far-field Spectra vs E,op ; 8 nm Seeding

Far-field spectra indicate that
optimization of contrast AND
peak power suggests working
design point of 7.5 MeV
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8-nm Case with Ext.

Seed. Power, Bunching, Spectra Snapshots
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E-beam energy loss, gain t-dependence

Power Gain, E-Beam Loss vs. t
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8-nm Seeded Case: Power, Bunching, Spectrum vs. Z

Instantaneous Power (watts) Power Spectrum vs. Z
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Wigner Transforms of On-axis, Far-Field E: 8-nm Seeded Case

Wigner transform W(t,w) of the
complex electric field can give
a 2-dimensional map of
intensity as function of time
and frequency -- essentially
this is the longitudinal phase
space of the radiation.

1-D projections give P(t), P(w).

As do “FROG” experimental
measurements, W(t,w) can
show underlying frequency
chirps and t- w correlations.

By the end of the simulation at
z=8 m, emission peak has
shifted to 8.3 nm
from the original seed
wavelength of 8.0 nm. There
IS a positive chirp which
agrees quantitatively with the
value predicted by
the modulation.

In these plots, time is
measured relative to a frame
moving at the speed of the
e-beam; interaction effects
lock radiation peak with e-
beam modulation

(l'?" Vgroup = Ve-beam )
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Movie of W(t,A) for 8-nm seeded bunching, far field...

Wigner transform of complex bunching Wigner transform of far-field, on-axis E
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8-nm SASE-initiated case - snaphots, etc.

Autocorrelation C, ,(t) of
far-field, on-axis E;
“half-power” point;
Indicative of inverse
spectral bandwidth (but
can be decreased by
underlying chirp)
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CBP

Center for
Beam Physics

Wigner Transforms of E - for 8-nm, SASE-initiated case
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Wigner transform of on-axis far field for SASE-initiated case with a reverse taper. E-beam and undulator parameters

are the same as the 8-nm seeded case. Peak instantaneous power ~1.0 GW at z=12 m.
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Radiation Power (watts)

Pulse Shape, Spectra Statistics for 8-nm SASE output

e 64 GINGER runs, identical except for different random number seeds
used to initiate shot noise

e SDDS toolkit used to determine RMS statistics of output variations

« Ensemble averages quite smooth;
— large shot-to-shot variations ( op(t) / <P(t)> ~ 1)
— jitter in pulse center-of-mass in (t, A) < (0.5 fs, 0.05 nm)

— Near-field P(t) has shorter duration in main spike, better contrast, but
more amplitude jitter
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Radiation Energy Statistics for 8-nm SASE radiation

e Same 64 SASE runs as previous slide

« Time-integrated total energy and RMS deviations show definite
exponential increase with z

Histogram distribution at 12-m output shows (perhaps) ~negative
exponential BUT maximum does occur at E=0 (as would be true
if output was due to one longitudinal mode) --- behavior more
similar to short pulse case of Bonifacio et al. (PRL ’96)
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32-nm Seeded Output Diagnostics
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A, =12 cm

Power (W)
Power (\:"l)
Power (W)

Same E,,p and [ )l

3.5% positive i AP y - A |
taper in K as in ; L1y i - Y.L S

0 - - -28 -13 0 13 26

8-nm case Time (fs) Time (fs) Time (fs)
I ) ',| I I | I 08 | I J
[ 12.17m | L 16.08 m 20.00m

Peak power at
16 m ~400 MW
in a FWHM spike
of 2.5 fs or less

i
f
nA I‘I |
M\
7 v Wal

[l

|
f

bunching fraction
bunching fraction
bunching fraction

0.00

-26
Time (fs) Time (fs)

4.8E+14 T —T T

3.0e+14 T T T T T 4.0E+14

2.5E+14
3.2E+14 CUSRH]

)

s/Sterrad/bin
d/bin)
w

s/Sterra

(Watts/Sterrad/bin)

1.6E+14

8.0E+13
5.0E+13 8.0E+13
L h el n L 1 L 0o

0.0E+00 — . . 0.0E+00 0.0E+00 . .
31 32 31 32 33 34 35 36 37 31 32 33 34 35 36

CBP Wavelength (nm) Wavelength (nm) Wavelength (nm)
" Cemterfor LAWRENCE BERKELEY NATIONAL LABORATORY

Beam Physics

Power (Watt
Power
Power (Watt




Norm. On-Axis Far Field Intensity

Chirp allows Temporal Pulse Compression

Output chirp in (dA/dt) implies that one can use standard pulse
compression techniques to reduce o,

For seeded case, one can reduce FWHM to < 1.5 fs (nearly 2X); less
compression possible in SASE case shown to right
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Is it Possible to Control the Shift and Chirp --- Yes!

The combination of “negative” taper and negative dy/dt produces a
positive dA/dt (and a net redshift)

Reversing to negative and dy/dt to values gives a
negative wavelength chirp (and a net blueshift)

Example below is seeded with 8 nm, optical few-cycle laser phase
shifted by 1, and =-3.2% /10 m

Wavelength (nm)

® Time (fs)
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SUMMARY

Saldin et al. “reverse taper” scheme for production of ultrashort
pulses scales well to soft x-ray and XUV wavelength regime

Both SASE and seeded mode work well with
possible for 1-kA, 1-2 GeV e-beams

The inherent evolution of suggests that extremely good
contrast ratios should be obtainable by a “wide-jaw” spectrometer

Underlying temporal wavelength chirp permits post-undulator pulse

compression of fs-duration spike

Users can exploit (likely) tunability of chirp and the (relative) ease
of temporal synchronization

By substituting a “many” cycle optical pulse for the “few-cycle”
variant, one can produce a pulse train of spikes with uniform
temporal separation

— An underlying “slow” y(t) variation in SASE mode might allow the spikes
to be separated in time AND central wavelength (related to energy-
chirped SASE idea of Pellegrini, Schroeder, etc. of a few years ago)

LAWRENCE BERKELEY NATIONAL LABORATORY




Some additional observations...

20 years Dawson and co-workers published a paper on the use of a

temporally-changing optical media to change the wavelengths of a

propagating light beam --- the so-called “photon accelerator”
(Wilks et al., PRL, 62, 2600 (1989) )

The e-beam in an FEL (together with the undulator) /> the effective
optical medium

— slippage allows the FEL radiation to sample time-dependent properties
of a small portion of the e-beam

=> monochromatic waves can have their A(t) properties modified

« To me at least, it seems that in the 2"9 quarter-century of FEL

theory and experiment we really can start massaging

via clever
manipulations of e-beams, undulators, seed lasers, etc., to obtain
output pulse properties matched to user desires
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