

# SASE Wavefront Propagation Calculations Using SRW

O. Chubar, F. Polack, M.-E. Couprie (SOLEIL)
M. Labat, G. Lambert, O. Tcherbakoff (CEA, DSM/SPAM)
91191 Gif-sur-Yvette, France

# Some Computer Codes for (SR) Ray-Tracing and Wavefront Propagation

#### Ray-Tracing / Geometrical Optics

Free: SHADOW (Univ. Wisconsin)

XOP by S. del Rio (ESRF), R. Dejus (APS)

RAY by A. Erko et. al. (BESSY) – "Improved Ray-Tracing"

...

Commercial: OSLO

CODE V ZEMAX

. .

#### Wavefront Propagation / Physical Optics

Free: PHASE by J. Bahrdt (BESSY) – Stationary Phase Method (PRSTAB 2006)

SRW (ESRF/SOLEIL) – Fourier Optics

...

Commercial: ZEMAX

**GLAD** 

MICROWAVE Studio

...

# Self-Amplified Spontaneous Emission Described by Paraxial FEL Equations



W.B.Colson

J.B.Murphy C.Pellegrini

E.Saldin E.Bessonov

et. al.

#### Approximation of Slowly Varying Amplitude of Radiation Field

Particles' dynamics in undulator and radiation fields (averaged over many periods):

$$\frac{d\theta}{dz} = k_u - k_r \frac{1 + p_{\perp}^2 + a_u^2 - 2a_r a_u \cos(\theta + \phi_r)}{2\gamma^2}$$

$$\frac{d\gamma}{dz} = -\frac{k_r f_c a_r a_u}{\gamma} \sin(\theta + \phi_r)$$

$$\frac{d\vec{p}_{\perp}}{dz} = -\frac{1}{2\gamma} \frac{\partial a_u^2}{\partial \vec{r}_{\perp}} + \mathbf{k}_{foc} \vec{r}_{\perp}$$

$$\frac{d\vec{r}_{\perp}}{dz} = \frac{\vec{p}_{\perp}}{\gamma}$$

Paraxial wave equation with current:

$$\left[2ik_r \frac{\partial}{\partial z} + \nabla_\perp^2\right] a_r \exp(i\phi_r) = -\frac{e\varepsilon_0 I f_c a_u}{mc} \left\langle \frac{\exp(-i\theta)}{\gamma} \right\rangle$$

Solving this system gives Electric Field at the FEL exit for one "Slice":  $E_{slice}|_{z=z_{evit}} \sim a_r \exp(i\phi_r)|_{z=z_{evit}}$ Loop on "Slices" (copying Electric Field to a next slice from previous slice, starting from back)

Popular TD 3D FEL computer code: GENESIS (S.Reiche)

Time-Domain Electric Field in transverse plane at FEL exit:  $E(x, y, z_{exit}, t)$ 

## **Wavefront Propagation**



Electric Field in **Frequency** and **Time** domains:

$$\vec{\tilde{E}}(\vec{r},\omega) \equiv \int_{-\infty}^{\infty} \vec{E}(\vec{r},t) \exp(i\omega t) dt$$

$$\vec{E}(\vec{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \vec{\tilde{E}}(\vec{r},\omega) \exp(-i\omega t) d\omega$$

**Huygens-Fresnel** Principle:

(paraxial approximation)

$$\vec{\tilde{E}}_{\perp}(\vec{r}_{2},\omega) \approx \frac{-i\omega}{2\pi c} \iint_{\Sigma_{1}} \vec{\tilde{E}}_{\perp}(\vec{r}_{1},\omega) \frac{\exp[i\omega \mid \vec{r}_{2} - \vec{r}_{1} \mid /c]}{\mid \vec{r}_{2} - \vec{r}_{1} \mid} d\Sigma_{1}$$

#### **Fourier Optics**

Propagation through Free Space:

 $\vec{r}_1$  and  $\vec{r}_2$  belong to parallel planes perpendicular to optical axis (Z)

$$|\vec{r}_2 - \vec{r}_1| = [\Delta z^2 + (x_2 - x_1)^2 + (y_2 - y_1)]^{1/2}$$
  $d\Sigma_1 = dx_1 dy_1$ 

Huygens-Fresnel Principle is Convolution-type integral, can be calculated using 2D FFT

#### "Thin" Optical Element:

$$\vec{\tilde{E}}_{\perp after}(x, y, \omega) \approx \mathbf{T}(x, y, \omega) \, \vec{\tilde{E}}_{\perp before}(x, y, \omega)$$

More Generally:

$$\vec{\tilde{E}}_{\perp after}(x_2, y_2, \omega) \approx \mathbf{G}(x_2, y_2, \omega) \exp[i\omega L(x_2, y_2)/c] \, \vec{\tilde{E}}_{\perp before}(x_1(x_2, y_2), y_1(x_2, y_2), \omega)$$

# An "Economic" Version of Free-Space Propagator



#### **Huygens-Fresnel** Principle:

(paraxial approximation)

$$\vec{\tilde{E}}_{\perp}(\vec{r}_{2},\omega) \approx \frac{-i\omega}{2\pi c} \iint_{\Sigma_{1}} \vec{\tilde{E}}_{\perp}(\vec{r}_{1},\omega) \frac{\exp[i\omega \mid \vec{r}_{2} - \vec{r}_{1} \mid /c]}{\mid \vec{r}_{2} - \vec{r}_{1} \mid} d\Sigma_{1}$$

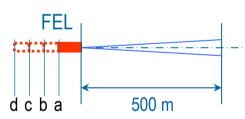
#### Analytical Treatment of **Quadratic Phase Term**:

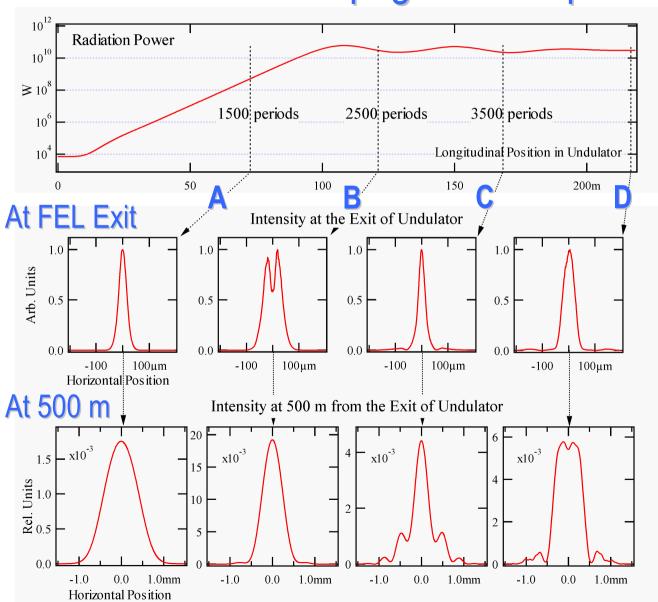
#### **Before Propagation:**

$$E_1(x_1, y_1) = F_1(x_1, y_1) \exp\left[ik\frac{(x_1 - x_0)^2}{2R_x} + ik\frac{(y_1 - y_0)^2}{2R_y}\right]$$

#### After Propagation:

$$\begin{split} E_{2}(x_{2}, y_{2}) &\approx \frac{-ik}{2\pi L} \exp(ikL) \iint_{\Sigma} F_{1}(x_{1}, y_{1}) \exp\left[ik\frac{(x_{1} - x_{0})^{2}}{2R_{x}} + ik\frac{(y_{1} - y_{0})^{2}}{2R_{y}} + ik\frac{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}{2L}\right] dx_{1} dy_{1} \\ &= \frac{-ik}{2\pi L} \exp\left[ikL + ik\frac{(x_{2} - x_{0})^{2}}{2(R_{x} + L)} + ik\frac{(y_{2} - y_{0})^{2}}{2(R_{y} + L)}\right] \times \\ &\times \iint_{\Sigma} F_{1}(x_{1}, y_{1}) \exp\left[ik\frac{R_{x} + L}{2R_{x}L}\left(x_{1} - \frac{R_{x}x_{2} + Lx_{0}}{R_{x} + L}\right)^{2} + ik\frac{R_{y} + L}{2R_{y}L}\left(y_{1} - \frac{R_{y}y_{2} + Ly_{0}}{R_{y} + L}\right)^{2}\right] dx_{1} dy_{1} \\ &= F_{2}(x_{2}, y_{2}) \exp\left[ik\frac{(x_{2} - x_{0})^{2}}{2(R_{x} + L)} + ik\frac{(y_{2} - y_{0})^{2}}{2(R_{y} + L)}\right] \end{split}$$


#### **Steady-State Simulation Examples**




### Wavefronts at FEL Exit and after Propagation in Space

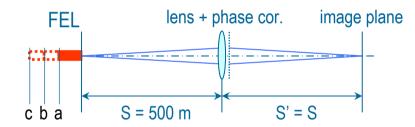
E = 25 GeV  $\sigma = 20.2 \mu\text{m}$   $\sigma' = 1.0 \mu\text{r}$ 

 $\lambda_u = 48.5 \text{ mm}$   $B_0 = 0.93 \text{ T}$   $\lambda_r \approx 1 \text{ Å}$ 





#### **Steady-State Simulation Examples**

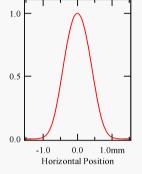

# Peculiarities of Saturated (/ Superradiant) SASE Wavefronts



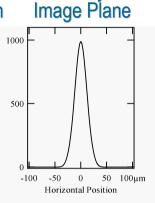
Intensity in

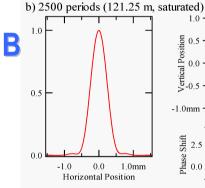
#### "Phase Correction" & Focusing Efficiency

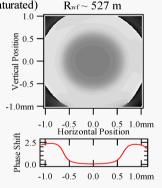
$$\Delta\Phi_{cor}(x, y) = \arg[\exp[i\pi(x^2 + y^2)/(\lambda R) + i\Phi_0]/E_{in}(x, y)]$$

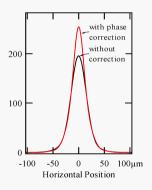


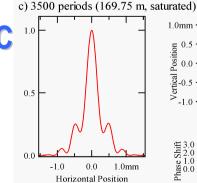

$$E = 25 \text{ GeV}$$
  
 $\sigma = 20.2 \text{ } \mu\text{m}$   
 $\sigma' = 1.0 \text{ } \mu\text{r}$ 

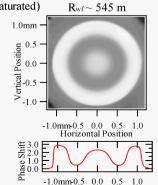

$$\lambda_u = 48.5 \text{ mm}$$
 $B_0 = 0.93 \text{ T}$ 
 $\lambda_r \approx 1 \text{ Å}$ 

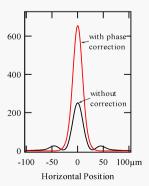

**SPIE 2000** 



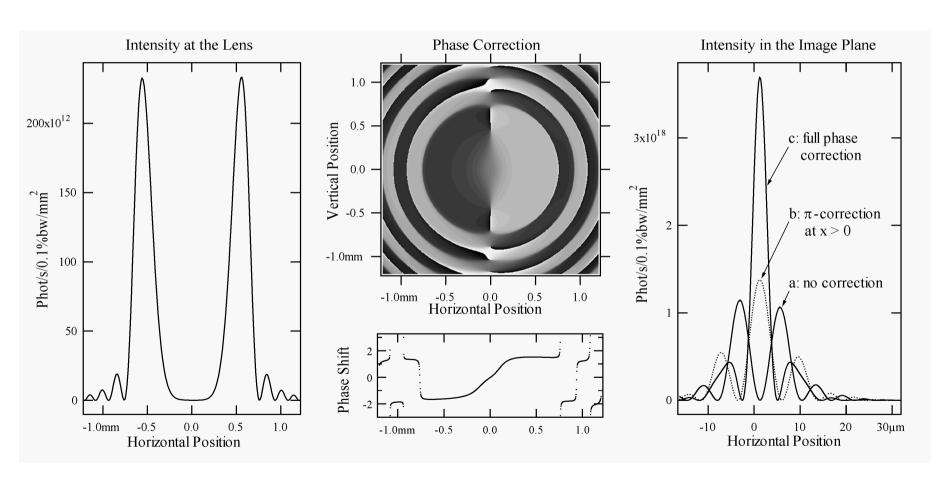







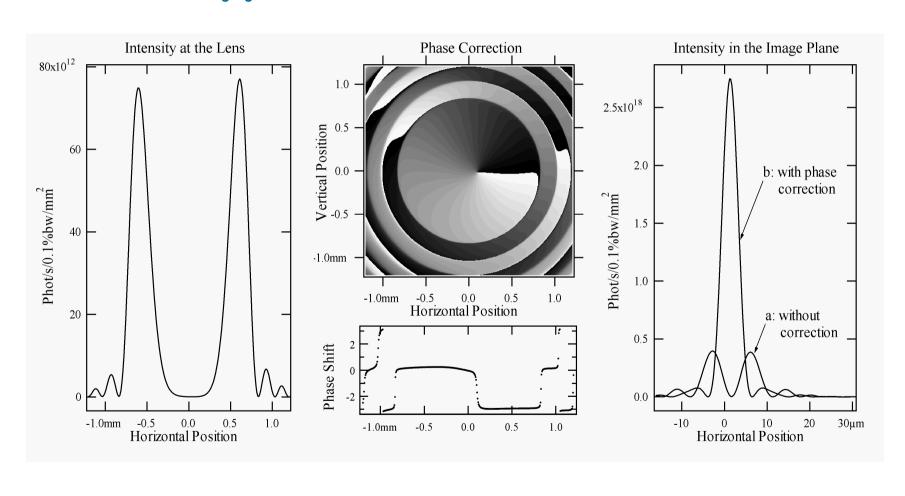





### Focusing of Undulator Radiation

#### Planar Undulator, Even Harmonics


E = 6 GeV; K = 2.2; 38 x 42 mm;  $\varepsilon$  = 4.775 keV (2<sup>-nd</sup> harmonic) 1 : 1 imaging; 30 m from middle of Undulator to Thin Lens & Phase Correction



### Focusing of Undulator Radiation

#### **Helical** Undulator, Harmonics n > 1

E = 6 GeV;  $B_{x \text{ max}} = B_{z \text{ max}} = 0.3 \text{ T}$ ; 28 x 52 mm;  $\varepsilon = 4.20 \text{ keV}$  (2-nd harmonic) 1 : 1 imaging; 30 m from middle of Undulator to Thin Lens & Phase Correction



### (Time-Dependent) Wavefront Characterization

#### **Easy Measurable Quantities:**

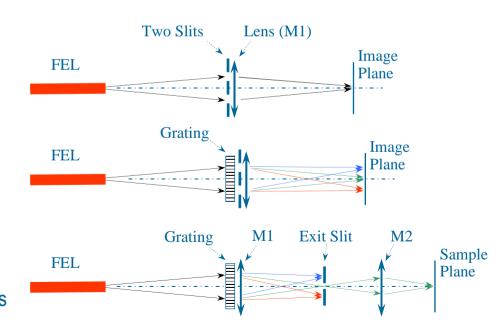
Intensity in Time and Frequency domains (or Power Density and Spectral Fluence) ~

Fluence ~

Power and Spectral Energy ~

$$|\vec{E}(x, y, z_{obs}, t)|^{2}, \quad |\vec{\tilde{E}}(x, y, z_{obs}, \omega)|^{2}$$

$$\int |\vec{E}(x, y, z_{obs}, t)|^{2} dt = (const) \int |\vec{\tilde{E}}(x, y, z_{obs}, \omega)|^{2} d\omega$$


$$\int |\vec{E}(x, y, z_{obs}, t)|^{2} dxdy, \quad \int ||\vec{\tilde{E}}(x, y, z_{obs}, \omega)|^{2} dxdy$$

#### Simple Optical Schemes:

Young's Double-Slit Interference Scheme - to test Special Coherence

Double-Slit Interference Scheme with Grating - to test Temporal Coherence

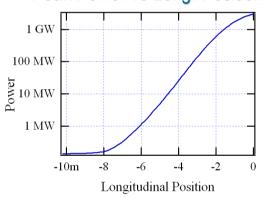
Monochromator + Refocusing Scheme
- often used in VUV / Soft X-Ray Beamlines



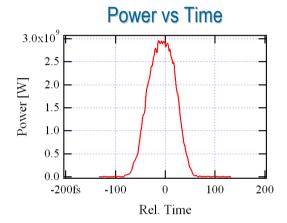
## SASE Pulse Profiles and Spectra at FEL Exit Synchrotron

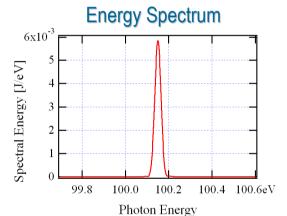
**E-Beam:** E = 1 GeV  $\sigma_{te} \sim 200 \text{ fs}$   $I_{peak} = 1.5 \text{ kA}$   $\varepsilon_x = \varepsilon_y = 1.2 \text{ mm-mrad}$ 

Undulator:  $K \sim 2.06$   $\lambda_u = 30 \text{ mm}$  $L_{tot} \sim 5 \times 2 \text{ m}$ 


 $\hbar \omega_0 = 100.15 \text{ eV}$ 

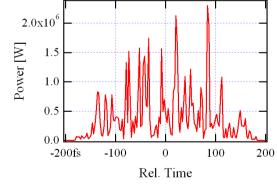
GENESIS

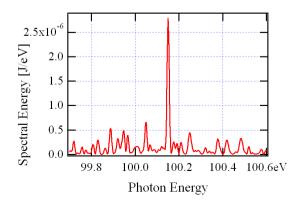

**ArcEnCiel** (phase 2)


#### A: Seeded FEL operation





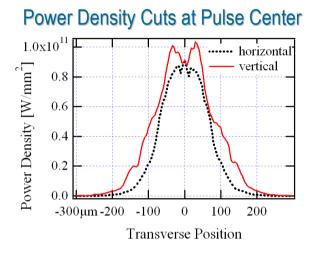

#### $P_{max \, ssed} \sim 50 \text{ kW}$ $\sigma_{t \, seed} \sim 25 \text{ fs}$

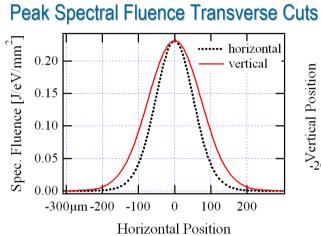


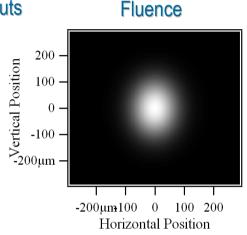



#### B: SASE (not saturated)

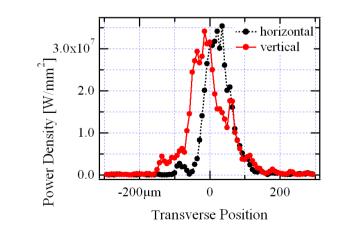


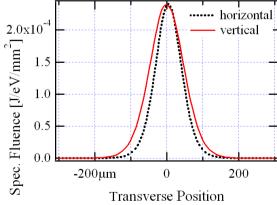


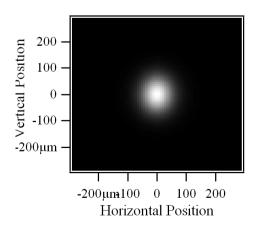





### Intensity Distributions at FEL Exit



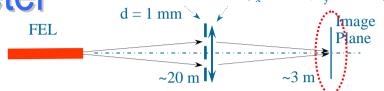

#### A: Seeded FEL operation



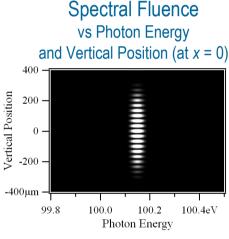



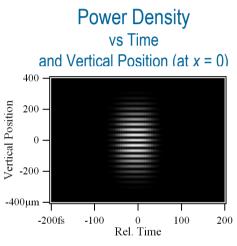


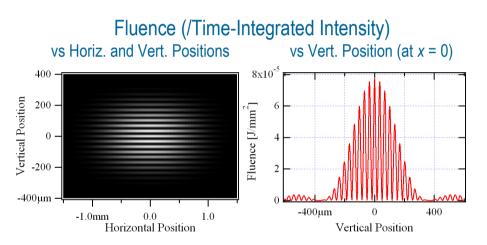

#### B: SASE (not saturated)



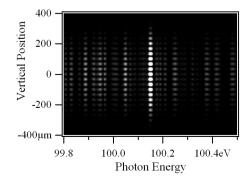


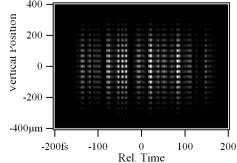



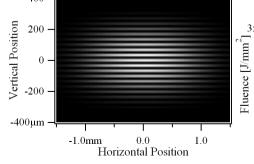


# Wavefront Characteristics in Image Plane of Young's 2-Slit Interferometer Two Slits de 1 mm Lens (f<sub>x</sub> = 18 m, f<sub>y</sub> = 2.6 m)

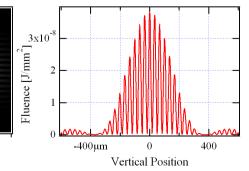






#### A: Seeded



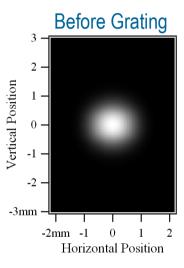



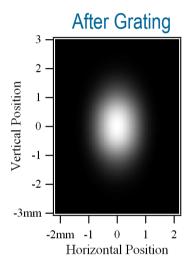



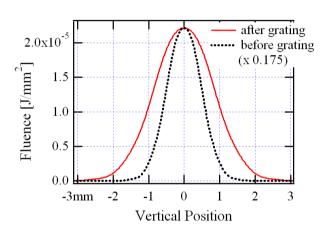

#### **B**: Started from noise



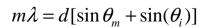




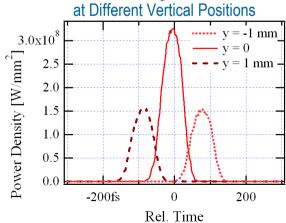



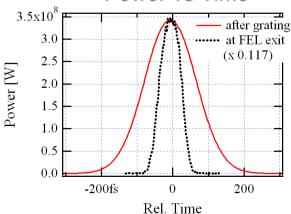

# Effect of Grating: Seeded FEL Wavefront Before and Immediately After Grating


#### Fluence in Transverse Planes Perpendicular to Optical Axis

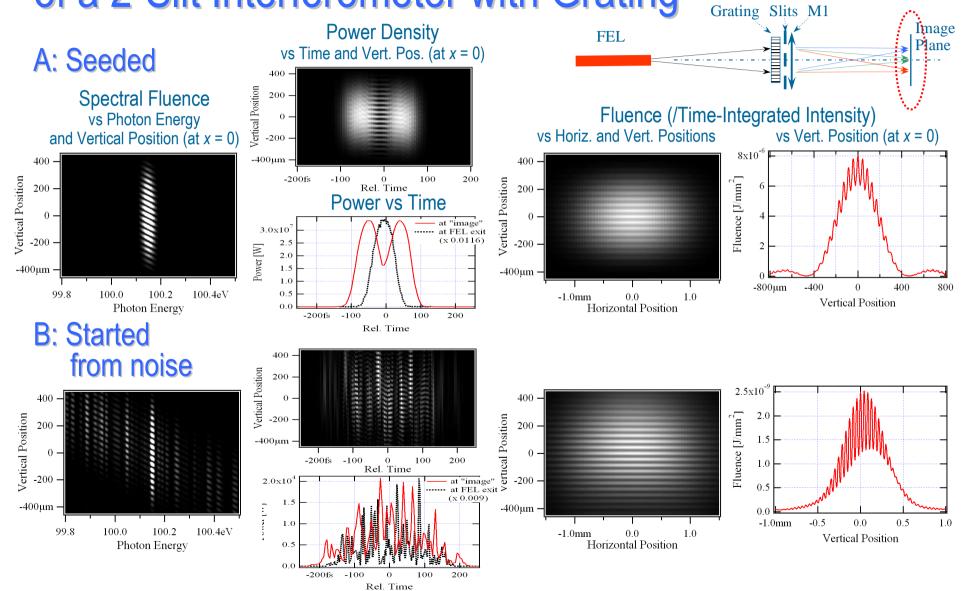








# Plane Grating $\sim 150 \text{ l/mm}$ $(90^{\circ}-\theta_{i}) \sim 2.5^{\circ}$

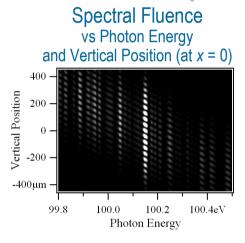


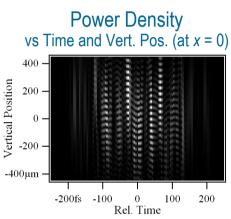




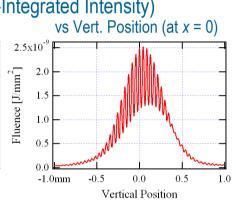

#### **Power vs Time**



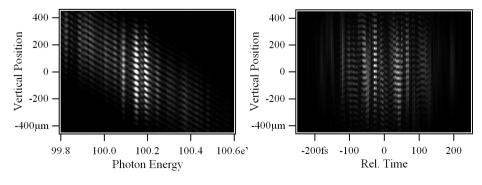

Wavefront Characteristics in the Image Plane of a 2-Slit Interferometer with Grating Grating Grating Grating Grating Grating Slits MI

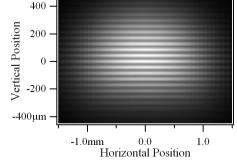


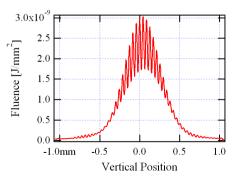




### SASE Wavefront Characteristics in Image Plane of a 2-Slit Interferometer with Grating

#### B-1: SASE, 1 pulse



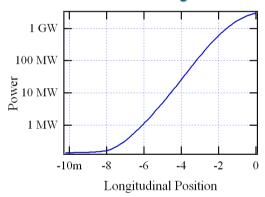



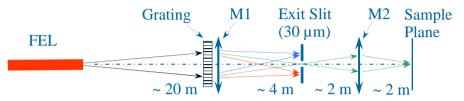



#### B-2: SASE, average of 10 pulses

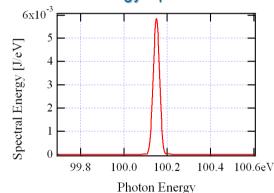




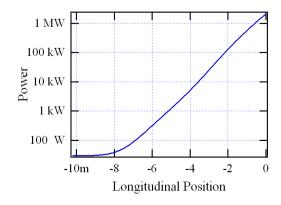


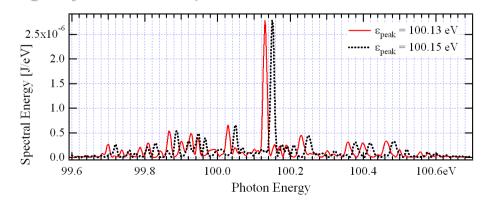




# Wavefront Cases for Simulation of Propagation through a Monochromator


#### A: Seeded FEL operation

#### Peak Power vs Long. Position




#### **Energy Spectrum**




#### B-1,2: SASE: Two cases with slightly shifted Spectra

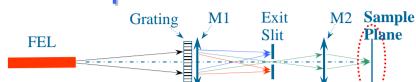


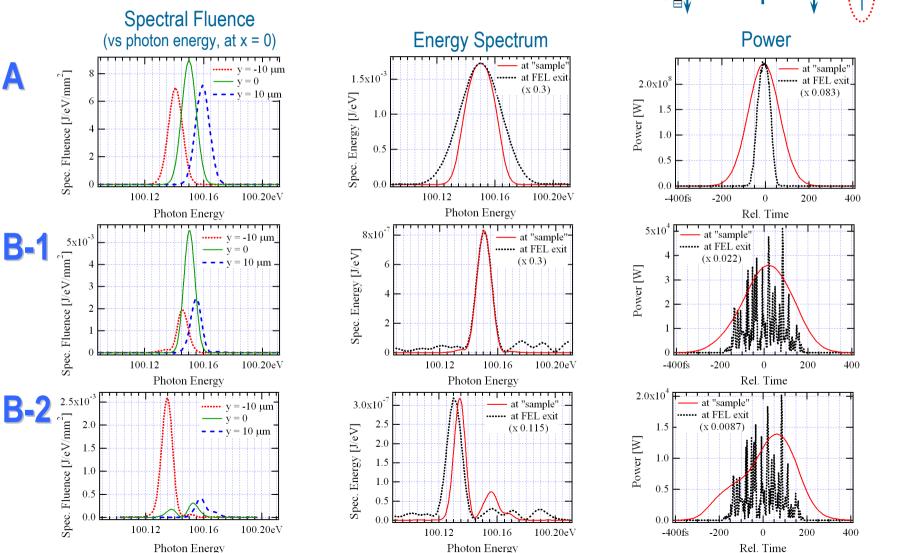


# Wavefront Propagation through a Monochromator



Sample


**Plane** 


**Exit** 

Slit

# Wavefront Characteristics at "Sample" Plane







# Practical Aspects of Time-Dependent Wavefront Propagation Calculations



- All examples were calculated on a regular PC with 1 GB of RAM (32-bit Windows)
- An entire wavefront sampled vs Photon Energy (/Time), Horizontal and Vertical Positions (/Angles) was kept in memory during propagation
  - typical sampling: ~300 (phot. en.) x 400 (h. pos.) x 400 (v. pos)
  - use of wavefront Resizing / Resampling
  - propagation simulations took much less CPU time than calculation of original SASE wavefronts
- To facilitate data exchange and automation of simulations, GENESIS 1.3 has been integrated into Emission part of SRW (after conversion by "F2C")
- Front-End used by SRW: IGOR Pro
  - powerful scripting environment (easy to sequence / automate simulations)
  - "instant" graphics / visualization

### **Possible Applications**



- "Participation" in FEL Emission Simulations:
  - transport of seeding photon beam
  - wavefront propagation in FEL oscillators
  - use of optical elements (e.g. gratings / crystals) in single-pass FELs
- Electron Beam Diagnostics and Interpretation of FEL Experiments data
- Optimization of Optical Beamlines for 4<sup>th</sup> generation SR Sources

(preserving coherence, keeping track of wave-optics phenomena in frequency and time domains)

- Towards Simulation of User Experiments
  - imaging on the limits of physical optics (phase-contrast, diffraction-enhanced, with magnetic effects, time-resolved,...)
  - diffraction: from crystals to molecules (?)
  - time-resolved spectroscopies (?)

- ...

### Acknowledgements

- J.-L. Laclare, P. Elleaume, A. Snigirev (ESRF)
- P. Dumas, P. Roy (SOLEIL)
- G. Williams (JLab)
- M. Bowler (4GLS)
- N. Vinokurov, O. Shevchenko (BINP)
- E. Saldin (DESY)
- EUROFEL