Advanced and Novel Accelerator Development: WP Summary

Coordinator: Brigitte CROS Laboratoire de Physique des gaz et des Plasmas – CNRS - UPXI

http://www.lpgp.u-psud.fr/operations/interaction/anad.htm

1st ELAN workshop, B. CROS, May 2004

Several existing projects

- ALPHA-X project in the UK (Advanced Laser Plasma High Energy Accelerator)
- The Eindhoven High-brightness Electron Source Programme
- The laser based electron acceleration approach at LOA and in Germany (MPQ-TUVienna)
- The plasma based accelerator program at Golp-IST

ALPHA-X project

Main areas of research:

- Injectors (conventional and all-optical)
- Laser-plasma wake-field acceleration
- Plasma channel capillaries
- Free-electron laser (FEL)
- Beam transport systems

Diagnostics (single shot Electro-optic measurement, down to 500 fs)

•Using a TW laser and a 10 MeV injector

•Operation of photo-injector + upgraded laser (1J, 20 TW) scheduled in 2005 Ist ELAN workshop, B. CROS, May 2004

Eindhoven Programme

Emphasis on controlled acceleration (LWFA)

	Available	Foreseeable improvements
High Brightness Injector	100 fs, 10 pC 7.5 MeV	75 fs, 100 pC 9.5 MeV
Plasma Waveguide	2×10 ¹⁸ cm ⁻³	2×10 ¹⁷ cm ⁻³ ???
Drive Laser	2 TW	2 TW
Expected Results	50±20 MeV	50±5 MeV

+ homemade code (GTP solver) for the simulation of the injector

All optical approach at LOA

Laser particle acceleration in the forced LWF regime

- Energy gains of 1 MeV to 200 MeV
- E-fields of 1 GV/m to 1000 GV/m
- Wide spectrum but large number of electrons and small emittance for higher energy electrons

Future work

- Electron sources up to ~ 1 GeV (nC, <1 ps)</p>
- Electron beam duration has to be measured
- Very high energy gains mainly rely on guiding
 - Different schemes will be tested

All optical approach at MPQ- TUVienna

- Phase-stabilization of amplified 1 kHz 5-fs pulses has been demonstrated.
- Achieved accuracy: 200 attosecond
- Typical applications: HHG and Attosecond pulse generation
- Laser Based Electron Acceleration projet:
- Bubble acceleration
- 2 schemes for acceleration: LWFA, Laser vacuum acceleration

The plasma based accelerator program at Golp-IST

Plasma channels for high intensity guiding (laser trigger + discharge) Laser guiding experiments to be performed Numerical experiments (OSIRIS code) showing self-injection of 10 pC electron bunches Acceleration of background plasma electrons to the GeV level in 1 cm length channel

Simulation efforts

Powerful codes are used (Pukhov et al 3D code, and CALDER code, OSIRIS code)

- Predict new regimes not yet reachable with existing experimental facilities (e.g. « the bubble »)
- Benchmarking of these codes necessary
- Photon-in-cell code (treats photons as quasiparticles): new approach to PW turbulence
- Other codes (A. Reitsma et al., N. Andreev et al.) used to predict linear or NL regimes, including guiding over long distances
 - Reproduce or explain experimental results (good synergy with experimental efforts)

Non linear schemes
Control of the properties of the electron bunches
Linear scheme
Inject a relativistic electron bunch into a small volume of phase space
Inject EM radiation and electron beam into the waveguide

Diagnostics

…Coordinate the work