

An overview of CLIC accelerating and transfer structure development

Alexej Grudiev CERN AB/RF

Alexej Grudiev, An overview of CLIC accelerating and transfer structure development

5 May 2004

CLIC rf study team: I.Wilson C. Achard, G.Carron, A.Grudiev, S.Heikkinen, S.Leblanc, I.Syratchev, L.Thorndahl, W.Wuensch

- Introduction
- Transfer structure
- Accelerating structure
 - New materials
 - New design
 - Optimization
- Summary

- Compact LInear Colider in the multi-TeV range
- Cost and geography: length < 50 km =>
- Very high gradient: 150 MV/m =>
- Power and gradient: 30 GHz =>
- Two beam acceleration scheme

Transfer structure

25 mm aperture transfer structure parameters:

 120° /cell L=3.283 mm 2a=25.0 mm F_{sync.} = 30.45 GHz β_{GR} = 0.8624 *C* R/Q = 219.3 Ω /m Depth = 1.222 mm Structure Length 0.8 m Cells number: 244 E_{surf} = 98 MV/m Beam current: 163 *A* Power: 130(HDS)x4/0.95= 560MW

Power extractor for transfer structure

Power extraction efficiency

Electric fields in extractor

Alexej Grudiev, An overview of CLIC accelerating and transfer structure development

New materials

Copper, tungsten iris and molybdenum iris accelerating structures

CLIC lifetime: $20y \times 9m/y \times 30d/m \times 24h/d \times 100Hz = 5\times 10^{10}$ cycles could be limited by fatigue due to pulsed surface heating

Comparison of Cupper alloys

Alloy name	Cu OFE	Cu Cr	Cu Cd	Cu Zr
ΔT [°C] (HDS Structure)	71	88	80	77
σ _{Thermal} (Thermal Stress of HDS Structure) [MPa]	234	305	244	263
σ _{Fatigue} (Fatigue Strength at 10 ⁸ cycles) [MPa]	117	193	205	241
σ _{Thermal} / σ _{Fatigue}	2	1.58	1.19	1.09

- Average loaded accelerating gradient
- Frequency
- •Number of particles in the bunch
- •Number of bunches in the train
- Number of rf cycles between bunchesPulse length
- Transverse long-range wakefields

 $\left\langle E_{acc}^{load} \right\rangle = 150 \ ^{MV} /_{m}$ $f = 29.985 \ GHz$ $N = 4 \times 10^{9}$ $N_{b} = 154$ $N_{cycles} = 20$ $t_{p} = 130 \ ns$ $W_{t,2} < 20 \ /_{pC \cdot mm \cdot m}$

$$E_{surf}^{\text{max}} = 420 \, \text{MV}/m$$

 $\Delta T^{\max} > 800 K$

 $W_{t,2} = 20 V/_{pC \cdot mm \cdot m}$

 $P_{in} = 250 MW$

$$E_{surf}^{\text{max}} = 347 \, \frac{MV}{m}$$

 $\Delta T^{\max} = 122 K$

$$W_{t,2} = 23^{V/_{pC \cdot mm \cdot m}}$$

 $P_{in} = 125 MW$

CERN

Surface electric field in HDS cell

<u>......)-(......)</u>-(.....

Surface magnetic field in HDS cell

<u>......)-(......)</u>

CERN

Comparison to undamped cell

	HDS	same a	same \mathcal{V}_g
a[mm]	1.9	1.9	1.97
v _g / c [%]	7.64	6.88	7.64
Q	3709	3889	3903 (-5%)
$r/Q[\Omega/m]$	26848	28004	26896 (0%)
E_{surf} / E_{acc}	2.2	2.03	2.05 (+7%)
$H_{surf} / E_{acc} [mA/V]$	3.45	3.12	3.15 (+9%)

GdfidL in time-domain $A_1 = 1120 V / pC mmm$ $f_1 = 39.66 GHz$ $Q_1 = 12.6$

HFSS in frequency-domain

 $f_1 = 39.66 \ GHz$ $Q_1 = 12.2$

Advantages and disadvantages

<u>PRO</u>

+ Excellent damping

+ E_{surf}/E_{acc} and H_{surf}/E_{acc} are only by 7 and 9 % higher than in undamped cell, respectively

- + 4 metal pieces per structure
- + No brazing is necessary
- + Better water cooling
- + No water/vacuum joints

+ Good vacuum pumping capabilities

<u>CONTRA</u>

new technology needs to
be shown (machinability,
tolerances, etc.)

- potential of coupling the main mode to the load during breakdown

5 micron machining test: 4 × 1/4

Alexej Grudiev, An overview of CLIC accelerating and transfer structure development

 A_1, f_1, Q_1 for each cell are interpolated from its values in the first, middle and last cells and then the structure wakefields are calculated using:

CLIC

$$W_{t} = \sum_{i=1}^{N_{cells}} A'_{1i} e^{-\frac{\omega_{1i}t}{2Q_{1i}}} \sin(\omega_{1i}t)$$

where

9-cells interpolation scheme

For each structure, $Q, v_g, r/Q, A_1, f_1, Q_1$ $E_{surf} / E_{acc}, H_{surf} / E_{acc}$ of the first and last cells and also A_1, f_1, Q_1 of the middle cell are interpolated and N_b is varied from 1 to 300

11 x 11 x 32 x 32 = 123904 structures have been analyzed

Beam dynamic constraints

For each structure:
N is constrained by short-range wakefields

Given parameters of the first and last cells and N, N_b, N_{cycles} , $E_{surf}^{\max}, \Delta T^{\max}, P_{in}, t_p$ are calculated for each structure

rf breakdown limits for Mo

$$E_{surf}^{\text{max}} < 420 \times 0.9 = 378 \, \text{MV}_{m}$$

and

$$P_{in} < \sqrt{150 ns / t_p} \cdot 100 MW$$

pulsed surface heating limit for CuZr alloy

$$\Delta T^{\max} < 70 \times 0.8 = 56 K$$

72932 (59%) structures satisfy these conditions

	Optimal structure parameters		
CLIC	HDS84	HDS80	
1	<pre>max(L/N*Eff)</pre>	max(Eff)	
a [mm]	$2.14 \div 1.68$	$1.94 \div 1.5$	
l [mm]	257	244	
N_{cycles}	9	8	
N_b	107	157	
$t_p [ns]$	43.8	55.6	
$P_{in} [MW]$	173	132	
N	3.08×10^{9}	2.36×10^{9}	
$L_{bx}[m^{-2}]$	1.45×10^{34}	0.93×10^{34}	
$\eta_{{ m rf-beam}}$ [%]	26.7	29.5	
$L_{bx}/N \times \eta_{rf-beam}[a.u.]$	12.6	11.7	

	DDS	HDS
f [GHz]	11.424	29.985
E _{loaded} [MV/m]	55	150
Efficiency [%]	33	29.5
Bunch spacing [rf cycles]	16	8

Use of Mo iris tips reduces efficiency by ~1%

- Optimization of accelerating structure
 - rf phase advance
 - rf frequency
- Investigation of material properties
 - Laser and ultrasound induced fatigue tests
 - DC spark experiments
- Commissioning 30 GHz rf power source in CTF3 for accelerating structure development