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The promise of linear colliders: Small beam sizes!

Like a human harr...

Machine O, o, x Oy

[nm] [nm] [cmé]

v

LEP 300000 3000 .0-10"°
SLC 1700 900 .5-10"8
FFTB 70
TESLA 553 5 .8-10°11
JLC/NLC 235 3 .5-10°12
CLIC 60 0.7 .3.10°13

/!

71 nm = size of water molecule

SLC cross-section vs
LEP:

Factor 600-1000

Where is the feasibility limit?
(collide nm-size beams)

Values for ¢, *
« characterize perf of whole collider
» cannot be addressed in test facilities

« feasibility must be shown in
simulations fully based on measured
parameters



What is important for luminosity stability?
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Perfectly straight trajectory (centered in all Imperfect environment (magnet alignment
quadrupoles, structures and sextupoles along errors, diagnostics errors) produces not-
straight line) straight trajectory (dispersion, wakefields)
2) Beam-beam overlap at interaction point: A2
- Ayi)
Vertical separation between beams denoted by A, L = Lo €

A, mainly from movement of last focusing quadrupole (1-to-1 transformation)




Requirements for mechanical stability:

Linac quadrupoles

Number 1300 for each of two linacs

Field 200 T/m

Transverse size [0.15x0.11 m (width x height)

Length 0.46-2.08 m

Weight 69 - 312 kg

Goal 1.3 nm (vertical) rms
uncorrelated motion above 4 Hz

CLIC stability study:
Demonstrate feasibility of
nano-metre size colliding
beams!

(magnet vibration, feedback,
time-dependent luminosity)

Both linac and beam
delivery are critical!

Final focus quadrupoles

Short Standard
Number 2 2
Field 388 T/m 450 T/m
Transverse size | 4.3 cm (outerrad.) | 2.0 M (outer rad.)
Length 3.0m 4.75m
Weight 250 kg 50 kg
Distance to IP 4.3 m 2.0m

Goal

4.0 nm (horiz.), 0.2 nm (vert.) rms
uncorrelated motion above 15 Hz




Cultural noise and natural ground motion:
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Protected environment required!

Above4 Hz: 01nm ==» 20 nm



The CERN test stand: Vibration of the floor!

Vertical direction

. 7" | Zoom
4 nm
_\Adnmm :
50 100 150 200 250
Frequency [HZz]

|Meyrin
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==t 1

Site suitable for active stabilization: not too noisy, not too quiet.



CLIC vibration CLIC

Stretched wire
d I
test stand quadrupole Geophones system
Water out
Water in

. DAQ

Active stabilization system

Vibration damping: Two systems (rigid or soft)
Cooling water: on/off

Vibration: Geophones

Alignment: Stretched wire system

Support platform: Lowest resonant frequency > 230 Hz




STACIS 2000 (TMC)
Rubber damping

Active feedback circuit
on ground motion

Measure ground motion
Actuators: piezos
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Industrial stabilization equipment

STACIS™ 2000

Active Piezoelectric Vibration Control
System

Vertical transmission:

0@ | 14
08 by PEF,
\‘\. r,llrw‘w.l =
3048 BN = 0.032
A0 d8 0.0

1Hz 1 10 He a0 | DO Hz

Performance Specifications:

TMC

{typical middle capacity isolater)

Active degress of freedom B

Active bandwith 0.3 to 250 Hz
Resonant frequency (active): 0.4 Hz
Transmissibility at resonance: < 1.1
Isolation above 2.0 Hz: =90 %

Siep ot (1041 reductian) 03 second
Internal noise: =<0.1 nm rms
Operating load range per isolater: 400 - 4500 |b.
[different passive mounts required) (1682 - 2045 ki)
Isolator overload safety factor: =21
Mumber of isolaters: Jord
hWlaxirmum displacement: 950 p inches (24 pm)
Stiffness (1000 |bs. /454 kg mass): 40,000 |bs. fin

(73 % 107 M)

Magnetic field emmited

% = 0.02 micro-gauss
broadband rms

Dimengional, Evironmental and Utility Requirements:

|zolater size:

11.75" w x 12.5" d x 10.25" h
(300 x 320 x 260 mm)

Isolater weight:

75 b (34 kg)

Controller size:

17"wx 10" d x 65" h
(432 x 254 % 165 mm)

Temp., operating:

50° to + 90°F(10 to 32°C)

Temp. storage:

-40° to 255°F(-40 to 125°C)

Humidity, operating:

76° F dewpoint(maximurm)

Fower reguired

100, 120, 230 or 240 volts; 50460 hz;
= B00 watts CE compliant

Floor displacement:

=350 p inches (24 pm)

Floor level:

level within 0.005"faot (0.4mm/m)
and coplanar withing 0.03" {0.75)

devices, and earthquake restraints

Options: TMC laminated stainless steel platforms, frames and “risers," leveling




Functional sketch Geophone

Load

Rubber

Piezoelectric
— actuator

Includes: Passive damping (high frequency)
Active damping (low frequency resonance)



| I

i ! 1
T | M‘"ﬂ ‘!ll‘
ls|| ll!lhll_ | I ’ll;;‘,’!‘l !I[ ’1 ||’




Frequency analysis of vibration data

We measure discrete ’U(tn) — ’U(tg + nAt) —

vibration velocities
N
Fourier transform S(F) = A —2miEn
of the velocity of) = tZ:lU(t”)e
n=

_ 24t |B(f))?
TN (2nf)? o K

L

Vibration velocity, wt) [nm/s]
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Time, t[g]

Power spectral density
of displacement P (f )

Physical picture: C N ,
Integrated RMS motion [(jf%:) — \ NA? E P(j;{_._r)
’ J]..J,,.f:,]..:
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This is what matters for the CLIC performance! Frequency [Hz)
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Determination of resolution and accuracy

Resolution Accuracy
(two sensors side by side) (different measurements)

10 - - 1.4

—1
T

0.28 nm at 4 Hz

- 10% absolute error

(@]
Y

Sensor resolution [ nm ]

Ratio of integrated RMS motion

O_ 7 = Distance meter Fogale
4§ | — - ESRF Guralp
+ = CERN Guralp
] ]

1 10 100 0 5 10 15 20 25 30 35 40 45
Frequency [HZ] Frequency [Hz]

0.01

1 nm is measured within 10%
absolute error!

Result also relying on direct distance
measurements (absol ute distance versus
vel ocity)



Comparison between geophones and capacitive distance-meter

Loudspeaker

oenet . - pupberfoot

- Different physics mechanisms

v oscillating coils
v electric capacity

* Vertical relative motion between platform
and supporting table (stabilized)

« Excitation with loudspeaker

5. Aedaelli, AB Seminar
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Active area: ¢=1.2 mm

WW. Coocsemans and S. Redaelll,
paper submitted to NMI (2004).
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Stabilization of the CLIC prototype quadrupole
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Best performance

0.01
1

10 ¢

0.1}

10 100
Frequency [Hz]

RMS vibrations above 4 Hz

Quad | Ground
[nm] [nm]
Vertical 0.43 6.20
Horizontal | (.79 3.04
Longitud. 4.29 4.32

Transmission ground to magnet




Progress in the field
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Stability with time (10 days)
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Jeune Genevois

-
-
o

"</ 1.3 nm

|_ I [ T [T TR _L.._.. I T _e_ 1
Aepinres =] Q.
I zauy 5
= ; S
- ._._._ n..u —
i Aepui4 i S #
L .IW. ) i
| Aepsinyl 4 I »: |
H>mummcum§ ““h. H
25 :
H =" __ _ H
| Aepsan) -.1_ .
i N 8
_ Aepuoy mm.,..__ £
i i -
B m___ -
- Aepung T, : i
B ;u : W|
- Aepineg s &
L 8
L el @ ” W —
- Repuiy , S &
i g 2.9
5 58
- o S8
- Aepsiny O a - $ ]
ol Ly ] P
= o\ o 0 0] O ad o

[wu] zH ¢ anoge uonow SINY [edIUBA

Ge60
GS 10
SL:gl
Seol
§G:e0
G161
SELL
S5:€0
S1:0e
15
SS:¥0
Slile
SEEl
G560
Slieg
SEvlL
SG:190
Slge
GEGI
GG 20
S1:00
SE91
GG:80
S 10
GeE Ll
GG60
]
GeE8l
GS:01L
SLe0
SE6l

Time



Long term motion:

1000 F——

Integrated
RMS motion -
in vertical 100¢
direction
above cut-off — '
( = 10¢
frequency) c ;
—
S
>
Imagine motion
below cut-off is '
filtered out (long 0.1
term motion): [
Corrected by
beam-beam
feedback!

0.033-50 Hz
Guralp

0.01 bm

4-315 Hz
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Effect of cooling water:

RMS vertical motion above 4 Hz

Nominal flow

RMS water contribution [nm]
N

of . .
: Linac tolerance]
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Water flow [1/h ]



Scheme of time-dependent luminosity simulations

Perfect
Machine

(Merlin)

(GuineaPig)

Tracking

BB interaction

!

’

Measured magnet
vibrations

Time-dependent
misalignment

Deflection angle
measurement

E
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Example of simulation results
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Luminosity performance:

Input spectra (L)/Lg
CLIC test stand
Ground, no stabilization (6.07 +0.50)%
Stiff stabilization system (68.97 +0.72)%
Soft stabilization system (50.08 4+ 1.52)%
Cooling water, with stabilization (68.01 4+ 0.83)%
Alignment support, with stabilization | (50.26 + 0.66)%
Empty LHC tunnel (quiet site, no stab.) | (64.86 £ 1.42)%
ESRF site (noisy site, no stab.) (0.49 £0.10)%

-> Reasonable performance with present technology for
guadrupole stabilization (FF)!



Conclusion

CLIC stability study has shown the feasibility to stabilize accelerator
magnets to sub-nm!

Stabilization to sub-nm can be maintained for long periods of time!
Several systematic effects have been studied in more or less detail!

Luminosity performance is decent (70%) with present technology!

Now: =» Adapt technologies to the specific accelerator requirements
(radiation, magnetic fields, sources of noise).
= Complete view of systematics and possible perturbations.
=» Realistic FF magnet prototypes with stabilization.
=> Integration into experimental detector environment, etc.

LAPP/Annecy is picking up our effort (see next talk)...

Modern technology can help us building linear colliders that looked
too ambitious just a short while ago!



