Electron Beam Diagnostics at the radiation source ELBE

- Radiation source ELBE
- Bunch length measurements
- BPM system
- Video acquisition
- Beam loss & machine protection

Radiation source ELBE

1/6/04

Mitglied der Leibniz-Gemeinschaft

The radiation source ELBE

Channeling radiation since September 2003

FEL 1 commissioning now

FEL2 in the design phase

Mitglied der Leibniz-Gemeinschaft

Radiation source ELBE

Pavel Evtushenko

Bunch length evolution (general idea)

• The main goal – to minimize the bunch length at the undulator entrance

Mitalied	der	Leibniz-Gemeinschaft
mighted	aor	EOIDTILE O'OTTIONTIOOTTUT

Radiation source ELBE	1/6/04
Pavel Evtushenko	3

ps bunch length measurements using CTR

- 1. Transition radiation is produced when the electron bunch passes a boundary of two media.
- Respond time is zero. Shape of the radiation pulse is a "copy" 2. of the electron bunch shape.
- 3. When the wave length of the radiation becomes more than the bunch length the radiation becomes COHERENT. (>> L)
- Power is proportional to: 4.

incoherent radiation N at $77pC N = 5 \times 10^8$ coherent radiation N^2

5. Measurements of the radiation spectrum give information about the bunch length.

How to measure the spectrum ? the Martin-Puplett interferometer

The Martin-Puplett interferometer (basics of operation)

Radiation source ELBE

1/6/04

Mitglied der Leibniz-Gemeinschaft

The Martin-Puplett interferometer (the same as at TTF, built in Aachen)

Radiation source ELBE

1/6/04

Mitglied der Leibniz-Gemeinschaft

The Martin-Puplett interferometer (mathematics)

- Iongitudinal field profile at the MPI entrance
- Iongitudinal field profile at the MPI exit
- detectors measure intensity I E²

$$E_{in}(t) = E_0 g(t)$$

$$E_{out}(t) = \sqrt{T R_{//}/2} E_0 (g(t) + g(t-t))$$

$$U(\tau) = E_o^2 T R_{//} (g(t))^2 + g(t)g(t-\tau))t$$

the <u>autocorrelation function</u> is measured with the help of the MPI

The Wiener-Khintchine theorem says: "the Fourier transform of the <u>autocorrelation</u> function is the <u>power spectrum</u>".

Mitglied der Leibniz-Gemeinschaft

Radiation source ELBE

Pavel Evtushenko

The MPI scan: raw data vs. normalized difference

- The measurement contains the bunch length related component and noise.
- The normalized difference contains much less of the noise, which is not related to the bunch length.

Mitglied der Leibniz-Gemeinschaft

Radiation source ELBE

Pavel Evtushenko

8

The power spectrum

Radiation source ELBE

1/6/04

Mitglied der Leibniz-Gemeinschaft

Bunch length reconstruction

- the Gaussian shape of the bunch is assumed
- its power spectrum is also Gaussian
- Iow frequency cut-off diffraction on the Golay cell input window

two filter functions $F 1_{filter} (\omega) = 1 - e^{-(\omega/\omega_0)^2}$ $F 2_{filter} (\omega) = 1 - e^{-(\omega/\omega_0)^4}$

The fit function is used

0.6

0.4

$$f_{fit}(\omega) = \left(-e^{-(\omega/\omega_0)^4} \right) C e^{-(\omega\sigma_t)^2}$$

0.2

Mitalied der Leibniz-Gemeinschaft

Pavel Evtushenko

Radiation source ELBE

10

1.0

 $-\frac{\omega}{\omega_0}$

– e

0.8

In our case the main parameters are the cavity #1 phase and the bunch charge.

Radiation source ELBE	1/6/04
Pavel Evtushenko	11

Radiation source ELBE

1/6/04

Mitglied der Leibniz-Gemeinschaft

• the Golay cell signal is maximized at the bunch length minimum

1/6/04

Mitglied der Leibniz-Gemeinschaft

What is to improve on the diagnostic

the bunch length reconstruction procedure (might be too empirical; different bunch shapes)

 understand better the low frequency cut-off (the best way - measure
 0 - 200 GHz how?)

Make a crosscheck measurements with completely different method

(we are working on the electro-optical sampling)

• The same measurements can be done with the CSR and with the diffraction radiation to make the diagnostic nondestructive.

Radiation source ELBE

Choice of the BPM

The BPM system is based on a stripline BPM since:

- can easily meet the system requirements (resolution of 100 μm)
- mechanical design is more simple (in our experience)
- cheap
- the BPM induces less wakefields

Question: with 10 nC bunch charge and with N (?) BPM cavities What will be the emittance degradation due to wakefield?

Radiation source ELBE

1/6/04

Mitglied der Leibniz-Gemeinschaft

Resolution of the stripline BPM

$$x = \frac{R}{2} \frac{\theta/2}{\sin(\theta/2)} \frac{I_R - I_L}{I_R + I_L} \implies \sigma_x = \frac{R}{2} \frac{\theta/2}{\sin(\theta/2)} \frac{\sqrt{2}\sigma_I}{2I} = \frac{R}{2\sqrt{2}} \frac{\theta/2}{\sin(\theta/2)} \sqrt{\frac{P_N}{P_S}}$$

• Measured dependence of the BPM signal vs. beam current is enough to estimate the potential BPM resolution.
• Real resolution of the system is always worse, because an electronics always makes some extra noise.

Mitglied der Leibniz-Gemeinschaft

Radiation source ELBE

1/6/04

BPM vs. _ **BPM (1)**

Radiation source ELBE

1/6/04

Mitglied der Leibniz-Gemeinschaft

BPM vs. _ BPM (2)

Radiation source ELBE

1/6/04

Mitglied der Leibniz-Gemeinschaft

BPM vs. _ **BPM (3)**

_ BPM	_ BPM	
40 mm	144 mm	
85 mm	235 mm	
brazed	e⁻ beam welded	
-24 dBm @ 1 mA	-24 dBm @ 1mA	
0.8 dBm/mm	0.8 dBm/mm	
1500 Euro	2800 Euro	

- More than 20 _ BPM were manufactured, installed and are operational at ELBE.
- Some of the BPMs are used by a separate system of current Difference measurements - machine protection system.

Radiation	source	ELBE
-----------	--------	------

The BPM electronics

Mitglied der Leibniz-Gemeinschaft

Radiation source ELBE

Pavel Evtushenko

Entire system performance

- To measure the system resolution with a beam one needs a beam with stability degree better than the system noise.
- An RF generator is used with 1-to-4 splitter to measure the system resolution.

Mitglied der Leibniz-Gemeinschaft

Pavel Evtushenko

Radiation source ELBE

Video acquisition system

Video DAQ PC: NI PCI-1407 monochrome 8 bit framegrabber

Data evaluation PC: LabVIEW application

loads an image from server calculate emittance calculate RMS parameters of the man profile

Radiation source ELBE

Lessons of video acquisition and beam profile measurements

Lesson 1: A PC based system with PCI framegrabber is probably most cost efficient

Lesson 2: The combination OTR+vidicon works OK only when the beam is well focused on the view screen.

(Note: we have the limitation $I_{av.} \times T_{m.pulse} = 400 \mu A \times ms$ in the diagnostics mode)

Lesson 3: The combination Chromox+vidicon works OK for long macro pulses only (small bunch charge).

Next steps:I mage distribution over network;
real-time measurements;
Vidicon CCD or OTR YAG;
crosscheck measurements;

Radiation source ELBE

Beam loss monitoring and machine protection

 The motivation: 40 MeV×1 mA=40 kW of CW beam, and some bad experience.

- The solution: two completely independent systems.
 - 1. Current difference measurements
 - 2. Ionization chamber based beam loss monitors

Sensitivity: 100nA of beam loss

Mitglied der Leibniz-Gemeinschaft

Radiation source ELBE

Thank you for your attention

Radiation source ELBE

1/6/04

Mitglied der Leibniz-Gemeinschaft