Post Collision Diagnostics Beamline or Post Collision Beamline Diagnostics?

V. Ziemann, A. Ferrari, T. Ekelőf, P. Eliasson Uppsala University

Frascati, May 5, 2004

- · Motivation
- · What comes out of the IP
- · Separating the different beams
- · Coherent Pair Diagnostic
- · Beam Dump Calorimetry
- · Conclusions

Motivation

- Need to get rid of the beams after collisions.
- Make sure to minimize background to the experiment.
- Need to diagnose what happened in the collisions:
 - · Luminosity, beam size and centering.
- Need to measure on fast time scales to counteract jitter.
- The post-collision beamline is the place to do it.
- Other considerations:
 - Operate at low and high intensity.
 - · Time scales: bunch-to-bunch, within bunch-train, averaged

What comes out: Primary Beam

- · Simulations done with Guinea_pig.
- E=1500 GeV, 60 x 0.7 nm, 4 x 10⁹ particles/bunch.

- Angular Distribution has rms 140 and 20 μm.
- Double peaked due to electric field of target beam.
- Energy Distribution has pronounced low-energy tail.

What comes out: Beamstrahlung

Figure 3: The horizontal (black) and vertical (red) angular distribution of the number of beamstrahlung photons.

Figure 4: Relative number of beamstrahlung photons as a function of energy.

- Angular distribution has rms of 140 and 100 μm.
- Large number of low energy photons.
- Will not consider this further for the time being.

What comes out: Coherent Pairs

Figure 5: The horizontal (black) and vertical (red) angular distribution of the number of coherent-pair leptons.

Figure 6: Number of particles in coherent pairs in a 10 GeV interval as a function of energy. Note that only half of the particles are positrons.

- Angular Distribution has rms of 330 and 390 µm.
- Energy Distribution is peaked at 1/10 times the energy of the primary beam.
- But goes up to almost the beam energy.

Separating the different beams

- Need to separate the beams to diagnose the constituitive parts.
- Probably need a chicane?
- Horizontal or vertical?
- (+1, -1) or (+1, -2, +1)?
- Gradient in the dipoles to blow up the beam size to alleviate the stress on the beam dump.
- Chicane generates synchrotron radiation, extra stress.
 - Critical photon energy is about 1.5 GeV.
 - Emit about 9 J/bunch/magnet \rightarrow 180 kW average total load.
- Blow up the vertical or horizontal beam size?
- · Need simulation package.
- Large energy spread makes direct integration of Lorentz-force equations necessary.
- Easy to define magnetic fields in space regions and aperture restrictions (e.g. detector solenoid and beam pipes).
- Use guinea_pig output files and pipe them through a simple first order integrator and plot trajectories and distribution on dump
- Example: IP + (10m) + (5m,1T) + (5m) + (5m,-1T) + (5m) + dump
- Primary beam is horizontally offset by 10 mm.

The Primary Beam in the Post Collision Beamline

- Wed Apr 28 20:59:25 2004
- Dump distribution mostly reflects the momentum distribution.
- · Reduces direct back-shine.
- · Separated from Beamstrahlung.

The Coherent Pairs in the Post Collision Beamline

Wed Apr 28 20:52:48 2004

- Electron and positron pairs nicely separated.
- Coherent positrons on electron side are a unique echo of the luminosity generating process at the interaction point.
- There are a few flyers shown as the spikes at the histogram ends.
- Need to address losses.

Coherent Pair Diagnostics

- The anti-partner (positron in the electron beam line) of the coherent pairs is a unique indicator of the luminosity generating process.
- Coherent Pairs peak at about 150 GeV.
- Coherent beam is spread out, smeared due to angular spread.
- Number of positrons in peak value of coherent pair distribution is about 3×10⁵ positrons/collision.
- Pulse duration is about 0.12 ps (35 μm bunch length).
- Bending radius for 1 T field is 330 m for 100 GeV.
- Peak power in a 1 m long magnet $5 \times 10^6 \,\mathrm{W}^{-1}$
- Total Energy is 6×10^6 J or 3.6×10^{12} eV per pulse.
- Critical Energy of photons is 6.6 MeV
- About 0.5×10^6 photons are emitted in 1% energy bandwidth.
- Should be easy to detect.
- Signal carries the time structure of the luminosity, bunch-by-bunch.
- Use streak camera or diodes? Other?
- maybe use a magnetic horn to capture the positrons, similar to a positron source.

Beam Dump Calorimetry

- Beam Dump is an extremely hostile environment.
- Preferably non-invasive diagnostic equipment.
- Utilize the fact that the refractive index of water is temperature dependent. (n = $1.341 2.262 \times 10^5$ T)

- Measure that with an interferometer.
- Assume area with rms width σ , where temperature differs with a gaussian profile and peak temeprature T_0 .
- · Number of wavelength change when traversing that area

$$\Delta m = 96.3 \ \sigma[m] \ T_0[K]$$

- Temperature *variations* of the order of mm and fractions of K should be detectable.
- Temperature profiles by scanning.
- Tomographic reconstruction of 2D or 3D temperature distributions.
- Difficulties:
 - Rapidly flowing water
 - Turbulence in the water
 - Changing refractive index bends the rays.
 - Need at least one input window and a mirror.

Conclusions and Questions

- Chicane (type? orientation?)
- · Coherent Pair Diagnostic (how? what detector?)
- Beam Dump Calorimetry
- Beamstrahlung Detector (Who? How? Where?)