Linac to IP Simulations with QMUL High-Throughput Cluster

Glen White

Queen Mary, University of London

ELAN – Frascati May 2004

•Aims

•Fast Feedback Systems at TESLA

•Multi-bunch simulations for TESLA

•Future plans

Aims

- Study performance of accelerators with multi-bunch tracking Linac-IP.
- Integrated test environment- all technologies/ all simulation environments.
- Provide database of IP parameters resulting from simulations for Particle/Accelerator Physics community (Lumi,Backgrounds etc).

Performance of TESLA with Angle + IP Fast Feedback

- Examine luminosity performance of TESLA with multi-bunch tracking through LINAC and BDS (currently TDR BDS).
- Include short+long range wakes in Linac structures, and therefore effects of systematic bunch distortions (bananas) at IP beam-beam interaction.
- Study effectiveness of IP and Angle fast beambased feedback systems.

Beam-Beam Interaction

- •Beam-beam EM interactions at IP provide detectable FB signal.
- •Beam-beam interactions modelled with GUINEA-PIG or CAIN.
- •Kick angle and percentage luminosity loss for different vertical beam offsets shown.

TESLA Fast Feedback Systems: IP Feedback

•Detect beam-beam kick with BPM(s) 1 or either side of IP.

•Feed signal through digital feedback controller to fast strip-line kickers either side of IP.

TESLA Fast Feedback Systems: Angle Feedback

•Normalised RMS vertical orbit in TESLA BDS due to 70nm RMS quadrupole vibrations.

•Correct IP angle crossing at IP by kicking beam at entrance of FFS (~1000m).

•No significant sources of angle jitter beyond this point as all subsequent quads at same IP phase.

TESLA Fast Feedback Systems: Angle Feedback

•Place kicker at point with relatively high **b** function and at IP phase.

- •Can correct ~130 mrad at IP (>10 s_v) with 3x1m kickers.
- •BPM at phase 90⁰ downstream from kicker.
- •To cancel angular offset at IP to 0.1s_v, level:

•BPM 1 : required resolution ~ 0.7mm, FB latency ~ 4 bunches.

•BPM 2 : required resolution ~ 2mm, FB latency ~ 10 bunches.

Banana Bunches

•Short-range wakefields acting back on bunches cause systematic shape distortions:

•Z-Y plane of a sample bunch:

•Only small increase in vertical emittance, but large loss in luminosity performance with head-on collisions due to strong beam-beam interaction.

•Change in beam-beam dynamics from gaussian bunches.

Banana Bunch Dynamics

•Luminosity of a sample bunch over range of position and angle offsets.
•Wait for IP and ANG FB systems to 'zero' – then fine tune by stepping in y then y' using LUMI monitor to find optimum collision conditions.

Luminosity Feedback

Multi-Bunch Simulations at QMUL

•Track >500 bunches through Linac, BDS and IP to observe dynamics of fast feedback correction and determine estimate of train luminosity.

•Typical simulation times on modern PC 40 hours+ depending on simulation parameters (per seed).

•To gauge performance for a variety of parameters/sim environments/machines need many cpu hours.

•QMUL high-throughput cluster: GRID cluster development. Currently 32 * Dual Athlon2400+ (64 CPUs).

•Currently being upgraded to ~320 CPUs with addition of 2.8 GHz P4 Xeon Processors.

QMUL High-Throughput Cluster

•QMUL Test GRID cluster- <u>http://194.36.10.1/cluster</u>

•Boxes run Redhat 9 Linux – have 100 Unix Matlab licenses.

Linac Simulation

PLACET:

•Structure Misalignment: 0.5mm RMS y, 0.3mrad y' error.

•BPM misalignment: 25mm (y).

•Apply 1-1 steering algorithm.

•Choose lattice that gives approx. 50% vertical emittance growth. (single bunch tracking).

•Injection: 0.2,0.5,1.0s RMS error.

•Misalign Quads 100nm RMS in y.

•Detune structures.

•Generate 500 bunches (multiple random seeds).

PLACET Output

•Electron beam at LINAC exit

- y (left), emittance (right).
- •Long-range wakes have strong effect on bunch train.
- •Need to perform steering on <u>plateux</u> not first bunch- slow.

BDS/IP Simulation

MATMERLIN:

•Random jitter on quads = 35nm RMS.

•Add 1.4ppm energy jitter on e⁻ bunches (simulates passage of e⁻'s through undulator).

•Track 80,000 macro-particles per bunch.

•Feedback (Simulink model in Matlab):

•BPM error: 2mm (ANG FB) 5mm (IP FB)

•Kicker errors: 0.1% RMS bunch-bunch.

•IP (Guinea-Pig):

•Input macro-beam from MatMerlin BDS (non-gaussian).

•Calculates Lumi & Beam-Beam kick.

•Produces e⁺e⁻ pairs -> track through solenoid field and count number hitting LCAL first layer for Lumi FB signal.

IP Feedback

•Corrects < 10 bunches.

- •Corrects to finite **D**y due to banana bunch effect.
- •Vertical Beam-Beam scan @ bunch 150.

IP Feedback

- •Corrects < 10 bunches.
- •Corrects to finite **D**y due to banana bunch effect.
- •Vertical Beam-Beam scan @ bunch 150.

Angle Feedback

•Angle scan after 250 bunches when position scan complete.

•Noisy for first ~100 bunches (HOM's).

•FB corrects to <0.1 s_y,

Luminosity

•Luminosity through bunch train showing effects of position/angle scans (small).

•Total luminosity estimate: L(1-500) + L(450-500)*(2820-500)

Multiple Seed Run (No HOMs)

•Luminosity fraction compared with mean no-Ground Motion case.

Multiple Seed Run

•Sum of Vertical IP Bunch Spot Sizes.

Extent of Banana Effect?

•Lumi proportional to 1/x if no banana (and offset), or optimised banana.

•No correlation -> lumi loss effects due to bunch shapes?

Effect of Lumi-Scan

•Effect of Pos & Ang Lumi scans compared with start of pulse with FB only.

•GM + 0.2 s RMS Injection error data.

LC Simulation Web Page

adres I http://hepwww.ph.gmu.ac.uk/iedeta/pi+inn	ordb bub		<u>.</u> 6.0 h
hadwgt	00001		
jetwgt	10000		
jitter	0		
pairs_ratio	(1)		
RALFILE			
File Description		File Download if Available	
on check mark in second column to star	t downloading.		
File Description		File Download if Available	
File Description Beam at exit of Linisc (PLACET) (e.)		File Download if Available	
File Description Beam at exit of Linac (PLACET) (e-) Beam at exit of Linac (PLACET) (e+)		File Download If Available 조 조	
File Description Beam at exit of Linac (PLACET) (e-) Beam at exit of Linac (PLACET) (e+) e- beam at IP pre-collision		File Download If Available	
File Description Beam at exit of Linac (PLACET) (e-) Beam at exit of Linac (PLACET) (e+) e- beam at IP pre-collision e+ beam at IP pre-collision		File Download If Available	
File Description Beam at exit of Linac (PLACET) (e-) Beam at exit of Linac (PLACET) (e+) e- beam at IP pre-collision e+ beam at IP pre-collision e- beam at IP post-collision		File Download If Available	
File Description Beam at exit of Linac (PLACET) (e-) Beam at exit of Linac (PLACET) (e+) e- beam at IP pre-collision e+ beam at IP pre-collision e- beam at IP post-collision e+ beam at IP post-collision Beakement at IP post-collision		File Download If Available	
File Description Beam at exit of Linac (PLACET) (e-) Beam at exit of Linac (PLACET) (e+) e- beam at IP pre-collision e+ beam at IP pre-collision e- beam at IP post-collision e+ beam at IP post-collision Background e+e- pairs Background eters		File Download If Available	
File Description Beam at exit of Linac (PLACET) (e-) Beam at exit of Linac (PLACET) (e+) e- beam at IP pre-collision e- beam at IP post-collision e- beam at IP post-collision e+ beam at IP post-collision Background e+e- pairs Background photons Background badrons		File Download If Available	
File Description Beam at exit of Linac (PLACET) (e-) Beam at exit of Linac (PLACET) (e+) e- beam at IP pre-collision e+ beam at IP pre-collision e+ beam at IP post-collision e+ beam at IP post-collision Background e+e- pairs Background e+e- pairs Background photons Background hadrons Minijets		File Download If Available	
File Description Beam at exit of Linac (PLACET) (e-) Beam at exit of Linac (PLACET) (e+) e- beam at IP pre-collision e+ beam at IP post-collision e+ beam at IP post-collision e+ beam at IP post-collision Background e+e-pairs Background e+e-pairs Background photons Background hadrons Minijets Luminosity files		File Download If Available	
File Description Beam at exit of Linac (PLACET) (e.) Beam at exit of Linac (PLACET) (et) e-beam at IP pre-collision e+beam at IP pre-collision e+beam at IP post-collision Background e+e-pairs Background e+e-pairs Background photons Background hadrons Minijets Luminosity files Simulation workspace variables		File Download If Available	

•Store all beam data from simulation runs online

•http://hepwww.ph.qmul.ac.uk/lcdata

Summary and Future Plans

•Facility for parallel processing of accelerator codes set-up.

•Used to test TESLA performance with Fast-Feedback.

- •Need to understand lumi performance & optimise.
- •Incorporate other feedbacks in linac and BDS.
- •Crab cavity angle FB.
- •New BDS lattice(s).
- •Collimator Wakes.
- •Similar tests with NLC (&CLIC)...
- •New people at QMUL to work on simulations:
 - •Tony Hartin (Phys. Programmer).
 - •Shah Hussain (PhD Student).