Overview of the present status of the SRF gun design and construction

Jochen Teichert

Forschungszentrum Rossendorf Zentralabteilung Strahlungsquelle ELBE PF 510119, 01314 Dresden J.Teichert@fz-rossendorf.de

Motivation

Rossendorf

Mitalied der Leibniz-Gemeinschaft

Superconducting Photo-Injectors

Main Advantage:

low RF power losses & cw operation

Problems and Open Questions:

- Cavity contamination by particles sputtered from cathode (fast Q degradation, low gradient).
- Specific geometry of the SC cavity (cathode insert).Can we reach the high gradient?
- Operation of the photo cathode itself at cryogenic temperature.
- It's not possible to do the emittance compensation like in a NC RF gun.

Peking University DC-SC Photo-Injector

B.C. Zhang et al., SRF Workshop 2001

Courtesy of B. Zhang

Mitglied der Leibniz-Gemeinschaft

Radiation Source ELBE J. Teichert 30.04.2004

BNL All-Niobium SC Gun

No contamination from cathode particles

1/2 cell, 1.3 GHz Maximum Field: 45 MV/m

Q.E. of Niobium @ 248 nm with laser cleaning before: 2×10^{-7} after: 5×10^{-5}

Thermal analysis: maximum laser power of 1 W/cm² & low Q.E. limit current

BNL, AES Inc., JLAB collaboration

T. Srinivasan-Rao et al., PAC 2003

I. Ben-Zvi, Proc. Int. Workshop, Erlangen, 2002

Courtesy of I. Ben-Zvi

Forschungszentrum Rossendorf

Mitglied der Leibniz-Gemeinschaft

Radiation Source ELBE J. Teichert 30.04.2004

AES SRF Photoinjector

Mitglied der Leibniz-Gemeinschaft

Radiation Source ELBE J. Teichert

AES SRF Photoinjector

ELBE SRF Photogun – Basic Design

Normal-conducting cathode inside SC cavity

Successful Proof of Principle Experiment, D. Janssen et al., NIM A507(2003)314

Cavity:	Niobium 3+ ¹ / ₂ cell (TESLA Geometry)				
	Choke filter				
Operation:	T = 1.8 K				
Frequency:	1.3 GHz				
HF power:	10 kW				
Electron energy:	10 MeV				
Average current:	1 mA				
Cathode:	Cs ₂ Te				
	thermally insulated, LN ₂ cooled				
Laser:	262 nm, 1W				
Pulse frequency:	13 MHz & <1 MHz				
Bunch charge:	77 pC & 1 nC				

ELBE SRF Photogun – Cavity Design Parameter

Radiation Source ELBE J. Teichert

Main Components of the ELBE SRF Photogun

Mitglied der Leibniz-Gemeinschaft

ELBE SRF Photogun – Present Status

Cavity:	Design finished			
	Fabrication of 2 (RRR 40 & 300) cavities at ACCEL GmbH			
	and a third cavity by Peking University			
Cavity tuners:	Fabrication finished			
	tests necessary			
Cathode cooling	g system:			
	Design finished, in fabrication			
Cathode transfe	er system:			
	Design finished			
Cathode preparation chamber:				
	Design finished, in the work-shop			
Cryomodule:	Design will be finished in July			

ELBE SRF Photogun – Cryomodule design

Mitglied der Leibniz-Gemeinschaft

J. Teichert

ELBE SRF Photogun – Cavity design

Mitglied der Leibniz-Gemeinschaft

ELBE SRF Photogun – Liquid N₂ Cathode Cooling

Radiation Source ELBE J. Teichert

ELBE SRF Photogun – Cathode Exchange & Transport

Forschungszentrum Rossendorf

Mitglied der Leibniz-Gemeinschaft

Radiation Source ELBE J. Teichert

ELBE SRF Photogun – Cathode preparation

Photolayer: Cs₂Te

Pulse mean rate current	mean	bunch	Laser		
	charge	Q.E.	P_{mean}	E _{pulse}	
13 MHz	1 mA	77 pC	1 %	0.8 W	60 nJ
1 MHz		1 nC		1 W	1 µJ

Radiation Source ELBE J. Teichert

ELBE SRF Photogun – Cathode preparation chamber

Radiation Source ELBE J. Teichert

ELBE SRF Photogun – Next steps & problems

Next work in Rossendorf:

assembling of new cathode preparation chamberassembling of cathode cooling test bench2 PostDoc positions from CAREbeginning in May resp. July

Collaboration:

co-evaporation technology know-how from CERN

Infrastructure:

new lab for cathode preparation & gun assembling ready; FZR will give money for the LHe-plant modification (distribution box and transfer line)

Financial support of BMBF:

proposal with BESSY, DESY, MBI evaluated positively, but we are still waiting for the money

Thank you for YOUR attention

Collaboration:

BESSY, Berlin Max-Born-Institut, Berlin TJNAF, Newport News University of Peking BINP, Novosibirsk DESY, Hamburg & Zeuthen ACCEL GmbH, Bergisch Gladbach Technische Universität, Dresden IfE-Automatisierung GmbH, Dresden Ingenieurkontor Stephan, Dresden

The ELBE crew

(visiting the ELBE river source, Spindleruv Mlyn, Czech Republic, April 2003)

Mitglied der Leibniz-Gemeinschaft

Radiation Source ELBE J. Teichert