Beam Monitoring from Beam Strahlung

Fast Luminosity Signal

- → Feed-Back
- \rightarrow Distinguish diff. detunings

Work for TESLA

work by summer studentsGunnar Klämke (U Jena, 01)

- Marko Ternick (TU Cottbus, 02)
- Magdalena Luz (HU Berlin, 03)
- Regina Kwee (HU Berlin, 03)
- New student, summer 04

Achim Stahl

DESY Zeuthen

16.Apr.2004

TESLA: small bunches (5nm x 550nm x 300µm) huge electric/magnetic fields

Particles accelerated by electric field

 \rightarrow creation of photon radiation (beamstrahlung)

Creation of e⁺e⁻ pairs by photon-photon interactions (2nd order effect, e⁺e⁻ << γ s)

Tracking of particles into the forward region (e⁺e⁻ confined by magnetic field of detector)

Tracking by simple stand-alone program

Beam Strahlung

Diagnostics of bunches at IP

- 3 potential sources of information
- energy-distribution of pairs
- number-distribution of pairs
- distribution of photons

Over-simplified detector simulation
detectors subdivided into cells
sum energy impact on cells
main source of uncertainty

→ stat. fluctuations of beam str.

Re-design of TESLA Forward Region for $L^* > 4.1 \text{ m}$

Observables

total energy
first radial moment
first moment in 1/r
first moment in 1/r
thrust value
angular spread
E(ring = 4) / E_{tot}
(A + D) - (B + C)
(A + B) - (C + D)
E / N

forward / backward calorimeter

Current Analysis Concept

Beam Parameters

- determine collision
- creation of beamstr.
- creation of e⁺e⁻ pairs

guinea-pig

Observables

 characterize energy distributions in detectors

analysis program

Solve by matrix inversion (Moore-Penrose Inverse)

beam parameter i

Analysis Problem

bunch rotation in mrad

Single Parameter Analysis

	nominal	1-ParAnal	Beam Diag.
Bunch width x Ave.	553 nm	1.5 nm	~ 10 %
Diff.		2.1 nm	~ 10 %
Bunch width y Ave.	5.0 nm	0.2 nm	Shintake
Diff.		0.5 nm	Monitor
Bunch length z Ave.	300 µm	4.3 µm	~ 10 %
Diff.		2.7 µm	~ 10 %
Emittance in x Ave.	10.0 mm mrad		?
Diff.		0.7 mm mrad	?
Emittance in y Ave.	0.03 mm mrad	0.001 mm mrad	?
Diff.		0.002 mm mrad	?
Beam offset in x	0	6 nm	5 nm
Beam offset in y	0	0.4 nm	0.1 nm
Horizontal waist shift	0 µm		None
Vertical waist shift	360 µm	24 µm	None

Single Parameter Analysis Test of Linearity Range

Single Parameter Analysis

weight of individual observables

Example: horizontal beam size Sngl Param Reso: 1.5 nm

horizontal beam size

Two Parameter Analysis

Multi Parameter Analysis

Sx ?s_x $?s_{z}$?s_v S_v S_z 0.3 % 0.4 % 3.4 % 9.5 % 1.4 % 0.8 % 1.5 % 0.9 % 0.3 % 0.4 % 3.5 % 11 % 0.9 % 1.0 % 24 % 11 % 5.7 % 24 % 1.6 % 1.9 % 1.8 % 1.1 % 16 % 27 % 3.2 % 2.1 %

Multi Parameter Analysis

Test with non-nominal bunches:

	e⁻	e+	nom.
bunch size x:	575nm	575nm	553nm
bunch size y:	5nm	7nm	5nm
bunch size z:	290µm	320µm	300µm

Full Analysis

	nominal	1-Par.	constraint	Result	Beam Diag.
Bunch width x Ave.	553 nm	1.5		25	~ 10 %
Diff.		2.1		12	~ 10 %
Bunch width y Ave.	5.0 nm	0.2		1.3	Shintake
Diff.		0.5		2.2	Monitor
Bunch length z Ave.	300 µm	4.3		20	~ 10 %
Diff.		2.7		24	~ 10 %
Beam offset in x	0 nm	6	5	6.4	5 nm
Beam offset in y	0 nm	0.4	0.5	0.8	0.1 nm
Vertical waist shift	360 µm	24		300	None
Bunch charge Ave.	2 10 ¹⁰	0.002	0.1	0.08	None
Diff.	2 10 ¹⁰	0.007	0.1	0.07	None

Fits with non-llinear Terms

	nominal	linear appr.	fit	Beam Diag.
Bunch width x Ave.	553 nm	1.5	1.5	~ 10 %
Diff.		2.1	2.2	~ 10 %
Bunch width y Ave.	5.0 nm	0.2	0.2	Shintake
Diff.		0.5	0.3	Monitor
Bunch length z Ave.	300 µm	4.3	4.6	~ 10 %
Diff.		2.7	2.7	~ 10 %
Emittance in x Ave.	10.0 mm mrad			?
Diff.		0.7	1.0	?
Emittance in y Ave.	0.03 mm mrad	0.001	0.001	?
Diff.		0.002	0.003	?
Beam offset in x	0 nm	6	7	5 nm
Beam offset in y	0 nm	0.4	0.03	0.1 nm
Horizontal waist shift	0 µm			None
Vertical waist shift	360 µm	24	73	None
bunch rot. horizontal	0 mrad		49	?
	0 mrad		0.06	?
bunch rot. vertical	0 mrad		0.9	?
	0 mrad		0.07	?

Fit with non-linear Terms

Example of 2 observables:

E_{tot} not strictly proportional to luminosity

input: s_y(e⁻) ~ 7.7 nm s_y(e⁺) ~ 5.5 nm

reco: s_y ave. ~ 7.0 nm s_y diff. ~ -2.7 nm

1st Idea

wild guess

3 Sources of Information

- energy-distribution of pairs
- number-distribution of pairs
- distribution of photons

up to now:only energy distribution of pairs usedtest:number-distribution of pairs

new observable ≻ N_{pairs} / E_{tot}

1st layer: measures N all layers: measure E

→ approx. 10% improved resolution

Number Distribution

weight of new variable

Number Distribution

Example: 6-Par. Analysis

	nominal	1-Par.	6-Par. without N	6Par with N
Bunch width x Ave.	553 nm	1.5	9.9	8.3
Diff.		2.1	6.2	6.0
Bunch width y Ave.	5.0 nm	0.2	0.8	0.6
Diff.		0.5	1.3	0.9
Bunch length z Ave.	300 µm	4.3	9.5	9.4
Diff.		2.7	6.2	6.1

→ roughly 10% improvement

First Look at Photons

First Look at Photons

-0.4 Jurad

0.2

0

-0.2

-0.4

-0.2

s_xs⊽ 6530 mmm

0

E_{tot}=3434.77 TeV

0.2

0.4

mrad

 10^{3}

10²

nominal setting (550 nm x 5 nm)

Conclusions:

- Interesting resolutions achieved from single bunches
- Multi-parameter analysis possible
- Electron Positron bunch can be separated
- Not all parameters measurable

Next Steps:

- understand realistic beam simulation
- include photons

? impact on calorimeter design?