

NON-LINEAR COLLIMATION

On behalf of A. Faus-Golfe & F. Zimmermann

J. Resta. ELAN Meeting 4-6 May 2004

Contents

Collimation system description

- Collimation system functions
- The main issues in the design
- Collimation solutions
- Non-linear collimation system
 - Properties
 - Optics
 - Effect of skew sextupole
 - Conclusions
 - On going studies

Collimation system functions

- Reduce detector background by removing beam halo
 - Muon suppression near the IP
 - Prevent synchrotron radiation emission in the final quadrupoles
- Ensure collimator survival and machine protection
- No produce intolerable wake fields that might degrade the orbit stability or dilute the beam emittance

The main issues in the design I

- The efficiency in removing the halo
- IR layout and the FFS optics collimation requeriments (SR, etc.)
- The mechanical collimator jaws with typical gaps of tens beam σ (~100 µm to ~1 mm)
- Not degrade the luminosity (optical aberrations, wakefields)
- Mechanical protection issues
 (beam power densities ~GWmm⁻²)

The main issues in the design II

- Mechanical scrapers:
 - can be damaged by the intense beams at small emittances !
 - induce wakefield kicks which cause emittance dilution !

Posible solution

Collimation solutions

- Blow-up beam sizes:
 - Collimators have big gaps and can survive a hit by the beam.
 - Very large β -functions and tight optical tolerances
 - Large system (~km)
 - Non-linear problems !
- Keep β-functions relatively small:
 - Better optical and wakefield performance
 - Looser tolerances
 - Beam could destroy the collimator

 ("consumable collimator", NLC approach)
 - Shorter and manageable systems

J. Resta. ELAN Meeting 4-6 May 2004

Collimation solutions

- Blow-up beam sizes:
 - Collimators have big gaps and can survive a hit by the beam.
 - Very large β-functions and tight optical tolerances
 - Large system (~km)
 - Non-linear problems !
- Keep β-functions relatively small:
 - Better optical and wakefield performance
 - Looser tolerances
 - Beam could destroy the collimator

 ("consumable collimator", NLC approach)
 - Shorter and manageable systems

J. Resta. ELAN Meeting 4-6 May 2004

Non-linear collimation system State of the art

(N. Merminga et al., SLAC-PUB-5165 Rev. May 1994)

• Two nonlinear elements placed π apart in phase advance with unit magnification

cancels geometric aberrations

 'Higher-order multipoles (decapoles, dodecapoles, etc.), are not useful because don't penetrate to the small distances necessary'

Non-linear collimation system Hamiltonians

• Skew Sextupoles:

$$H_{s} = \frac{K_{s}}{3!} \left(y^{3} - 3(x + D\delta)^{2} y \right)$$

• Normal Octupoles:
$$H_o = \frac{K_o}{4!} \left(y^4 + (x + D\delta)^4 - 6(x + D\delta)^2 y^2 \right)$$

where
$$\delta \equiv \frac{\Delta p}{p}$$

Non-linear collimation system Hamiltonians

• Skew Sextupoles:

$$H_{s} = \frac{K_{s}}{3!} \left(y^{3} - 3(x + D\delta)^{2} y \right)$$

• Normal Octupoles:
$$H_o = \frac{K_o}{4!} \left(y^4 + (x + D\delta)^4 - 6(x + D\delta)^2 y^2 \right)$$

where
$$\delta \equiv \frac{\Delta p}{p}$$

Non-linear collimation system Properties

- Even shorter $(I_5 \downarrow \downarrow \Rightarrow l_B \uparrow \uparrow)$
- Ist skew sextupole
 - \rightarrow increase $\sigma_{x,y}$ at spoiler
 - \rightarrow amplifies δ and \times_{β} oscillations
 - spoiler at larger amplitude (smaller wake effect)
- $D_{\times} \approx 0$ at spoiler avoids $\Delta E \rightarrow \times_{\beta}$ coupling
- 2nd skew sextupole cancels geometric aberrations
- Single spoiler only (compact, less wakefields)
- 3rd weak sextupole for orthogonal phase
- Comfortable spot size at absorber behind spoiler
- Emittance growth from SR

Non-linear collimation system Properties

- Even shorter $(I_5 \downarrow \downarrow \Rightarrow l_B \uparrow \uparrow)$
- Ist skew sextupole
 - \rightarrow increase $\sigma_{x,y}$ at spoiler
 - \rightarrow amplifies δ and \times_{β} oscillations
 - spoiler at larger amplitude (smaller wake effect)
- $D_{\times} \approx 0$ at spoiler avoids $\Delta E \rightarrow \times_{\beta}$ coupling
- 2nd skew sextupole cancels geometric aberrations
- Single spoiler only (compact, less wakefields)
- 3rd weak sextupole for orthogonal phase
- Comfortable spot size at absorber behind spoiler
- Emittance growth from SR

Non-linear collimation system for

Optics design

[A. Faus-Golfe & F. Zimmermann. CERN-SL-2002-032 (AP)]

First optics solution at 3 TeV

First optics solution at 3 TeV

Effect of skew sextupole I

Integrated sextupole strength

$$K_s = \frac{2B_T l_s}{(B\rho)a_s^2}$$

Effect of skew sextupole I

Integrated sextupole strength

$$K_s = \frac{2B_T l_s}{(B\rho)a_s^2}$$

deflection:

$$\Delta x' = -\frac{\partial H_s}{\partial x} = K_s (x + D_s \delta) y$$

$$\Delta y' = -\frac{\partial H_s}{\partial y} = -\frac{1}{2} K_s \left(y^2 - x^2 - D_s^2 \delta^2 - 2D_s \delta x \right)$$

Effect of skew sextupole II

• Position at downstream spoiler:

$$x_{spoiler} = x_{0,spoiler} + R_{12}\Delta x'$$
$$y_{spoiler} = y_{0,spoiler} + R_{34}\Delta y'$$

• Beam size: R_{12}, R_{34} : optical transport matrix elements between the sextupole and the spoiler

$$\sigma_x \approx \sqrt{\beta_{s,spoiler}} \varepsilon_x$$
$$\sigma_y \approx \sqrt{\frac{9}{5}} \frac{1}{2} |R_{34}K_s| D_s^2 \delta_{rms}^2$$

Effect of skew sextupole III

• Condition for spoiler survival:

$$\sigma_{x}\sigma_{y} \approx \sqrt{\frac{9}{5}} \frac{1}{2} |R_{34}K_{s}| D_{s}^{2} \delta_{rms}^{2} \sqrt{\beta_{x,spoiler}} \varepsilon_{x} \ge \sigma_{r,\min}^{2}$$
(1)
The beta functions: Minimum beam size
$$\beta_{x,sext} = \frac{D_{s}^{2} \Delta^{2}}{\varepsilon_{x} n_{x}^{2}} (2) \qquad \beta_{y,spoiler} = \frac{K_{s}^{2} R_{34}^{2} D_{s}^{4} \Delta^{4}}{4\varepsilon_{y} n_{y}^{2}}$$
(3)

collimation depth $\pm n_x \sigma_x$ Collimation $\pm n_v \sigma_v$ amplitudes

 $\boldsymbol{\beta}_x$

J. Resta. ELAN Meeting 4-6 May 2004

Effect of skew sextupole IV

• The achievable value of D_s is limited by the emittance growth $\Delta(\gamma \varepsilon_x)$ due to SR in the dipole magnets

$$\Delta(\gamma \varepsilon_x) \approx \left(4 \times 10^{-8} \, m^2 GeV^{-6}\right) E^6 I_5 < f\varepsilon_x \tag{4}$$

f: fraction of the initial emittance *I*₅: radiation integral

§ PARAMETERS FOR SKEW SEXTUPOLES AND SPOILER

Variable	Value
length	2.07 km
beta functions (x, y) at skew sext.	175, 82 km
dispersion at skew sext.	61 mm
skew sext. pole-tip field, radius, length	1.4 T, 4 mm, 3 m
skew sext. strength K_s	104 m ⁻²
R_{12} , R_{34} from sext to spoiler	110, 307 m
beta functions (x, y) at spoiler	20.5, 586 km
dispersion at spoiler	~0 m
rms spot size (x, y) at spoiler	69, 209 mm
vertical spoiler half gap ay, spoiler	16.7 mm

21

§ PARAMETERS FOR 'PRE' SKEW SEXTUPOLES

$$K_{s}^{pre} = \frac{2}{(n_{y}^{IP})^{2}} \beta_{y}^{pre} \varepsilon_{y}} \left(\frac{2a_{y,spoiler}}{K_{s}R_{34}}\right)^{1/2} \frac{1}{R_{34}^{pre}}$$

Variable	Value
hor. beta function at pre skew sext.	5.4 km
vert. beta function at pre skew sext.	19.5 km
pole-tip field, radius, length	23mT, 20 mm, 3 m
strength K ^{pre}	0.068 m ⁻²
R_{12} from pre-sext. to sext.	290 m
R_{34} from pre-sext. to sext.	113 m

Conclusions

- ✓ Single spoiler for all three degrees of freedom \rightarrow compact
- ✓ Spoiler at large amplitude → smaller wake effect
- Comfortable spot size at absorber behind spoiler
- ✓ Emittance growth from SR

On going studies...

Local chromatic correction necessary

Calculate and minimize residual aberrations !

Comparison with linear system

Efficiency

- Luminosity
- Particle loss
- Bandwidth
- Blow-up emittance (momentun spread, synchrotron radiation)
- ... !