

### Status of the TESLA Beam Delivery System Lattice Design

Deepa Angal-Kalinin Daresbury Laboratory, UK





- Lattice Design since TDR
- Collimation Comparison TRC
- Modifications in TDR lattice and associated problems
- Extraction line issues
- Alternate geometries for extraction
- Ongoing studies
- Plans



#### What has happened since TDR?

- Local chromaticity correction FFS solution for TESLA : O. Napoly & J. Payet.
- Collimation task force TESLA, NLC and CLIC collimation was compared at 500 GeV using same set of codes.
- O. Napoly and J. Payet : introduced one more energy collimator to improve the performance.
- With TDR layout MES section and the additional energy collimator machine protection issues.
- Spent Beam Extraction Seminar : Dec'02
  - Karsten Büßer: Average Beamstrahlung power deposited on the septum blade (~0.3W–nominal beam, ~80W–realistic beam) :
  - Charged particle loss
  - Electrostatic separators, R& D on septum, dump & other considerations



#### What has happened since TDR?

- R. Brinkmann suggested
  - to include a small (~0.3mrad) vertical crossing angle to shine the beamstrahlung away from the septum blade.
  - to reduce e-particle loss for the low energy tail particles split the final strong doublet into quadruplet – optics solutions for incoming beam?
- Optics and collimation review meeting Zeuthen, January'04 to discuss the problems with TESLA BDS optics, collimation & extraction.
- Crossing angle meeting was held a day before to discuss the impact of crossing angle on physics.



#### What has happened since TDR?

 Final focus lattice with local chromaticity correction for L\*= 3m, 4m,5m in TDR length constraint of 600m – by O.Napoly & J. Payet





#### **Collimation task force TRC**

Simulation (A. Drozhdin) of collimation with beam halo shows no hard edge for TESLA system  $\rightarrow$  some particles can reach IR



Bad performance of TESLA system *not* due to scattering, but appears to be optics! (confirmed by results of G. Blair)





# O.Napoly & J.Payet : proposed to include one more energy collimator to improve the performance.





#### **TDR BDS Layout**



ELAN Meeting, Frascati





#### **Energy Spoiler Protection & Fast Extraction**



passive protection against 'fast' energy errors

•assume pure  $\beta$ -oscillations less likely





#### **Halo Collimation**



- VTX with r = 14 mm
  requires mask with r = 12 mm
- collimation required:
  - *x*: 7.8 [TDR 13 ]
  - y: 42.4 [TDR 81 ]
- Collimation requirements about a factor 2 tighter!
- Collimator wakefields?
- Reconsider choice of L\*
- Tail folding octupoles



#### **TDR Collimation**



±45° lattice : some strange chromatic properties.

Balancing the second order terms was difficult in TDR.....



#### Ideas presented by Nick Walker to change the TESLA BDS



- Move Fast Emergency Extraction Line to exit of linac
  - upstream of e+ source on e- side
- Explore use of 'e+ target bypass arc' for energy collimation
- re-design (re-think) betatron collimation
  - current 45° lattice not good
- separate diagnostics station (emittance measurement)
  - ideally also placed directly after linac
- Other options.....



#### **Extraction Line Issues ....**

- Small vertical angle solution to reduce beamstrahlung on septum.
- Split final doublet into quadruplet to reduce e-particle losses.

Daresbury group found an optics solution to this problem.





#### L\*=5m with final quadruplet



Further optimisations .....may give better results!



#### L\*=5m with final quadruplet

Beam Sizes for -40% energy tail particles at MSEP (~50 m from IP) in the extraction line : -0.02 + 0.01 + 0.01 + 0.01 + 0.01





A small horizontal crossing angle (~2 mrad) is proposed by O. Napoly, J. Payet, Saclay & P. Bambade, B.Mouton, Orsay



# Luminosity loss without crab-crossing for 2 mrad horizontal crossing angle





## **Crossing Angle Choices for TESLA**

• 300 µrad vertical crossing + quadruplet to reduce beam losses :Necessary R&D on reliable 50KV/cm, 20-30 m long electro-static separators.

 2 mrad horizontal crossing angle → no electrostatic separators, 15% Luminosity loss without crab crossing, can be compensated by angular dispersion at IP.

• Large crossing angle like in NLC

Crossing angle working group to recommend the detector and physics implications.



#### Summary

- TESLA BDS design is being improved for incorporating local chromaticity correction section, better collimation and machine protection issues.
- Re-iteration on L\*.
- FFS to be optimised for third & higher order terms.
- Alternative solutions for beam extraction suggested by Saclay, Orsay and Daresbury groups.
- The details of these designs including beam diagnostics need to be worked out.