The Theory of

Bubble Acceleration:

numerical and analytical results

S. Gordienko^{1,2}, A. Pukhov¹, T. Baeva¹

¹ Institute for Theoretical Physics I, Universität Düsseldorf
² L.D.Landau Institute for Theoretical Physics, Moscow

• Numerical results

• Analytical theory

• Conclusions

University Düsseldorf

Numerical Results

University Düsseldorf

A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002)

University D sseldorf

- A short laser pulse expels electrons and produces a cavity (**the bubble**).
- The uncompensated charge of ions inside the bubble attracts and accelerates electrons at the rear side of the cavity.

A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002)

University D sseldorf

Analytical Theory

University Düsseldorf

Theoretical Model

- Unmovable ions
- Cold hydrodynamics for electrons

$$_{t}\vec{p} + (\vec{v})\vec{p} = -q(\vec{E} + \frac{1}{c}\vec{v} \times \vec{H})$$

• Maxwell's equations

University Düsseldorf

The most important property of the theoretical model

The ultrarelativistic bubble regime can be described with the linear theory.

University Düsseldorf

Physics of the cavity

$$\left(\frac{2\pi R}{\lambda_p}\right) = 2.6\gamma_p \sqrt{\ln(2\gamma_p)}$$

$$\lambda_p = \frac{2\pi c}{\omega_{pe}}$$

cavity

The boundary of the bubble is where the relativistic factor of electrons coincides with the relativistic factor of the bubble (the resonance particle-wave interaction).

University Düsseldorf

The largest relativistic factor of the trapped electrons

$$\gamma_{tr} = 1 \, l \gamma_p^3 \sqrt{\ln(2\gamma_p)}$$

University Düsseldorf

Bubble Stability

- The perturbations of the longitudinal momentum component decay as $p_x \sim 1/\tau$
- The perturbations of the transversal momentum components decay as $p_y, p_z \sim 1/\tau^2$

• The stability is due to 3D-effects: the perturbations run away before they are amplified (convective stability)

University Düsseldorf

Conclusions

University Düsseldorf

• The bubble accelerationregime is the only known stable linear regime of ultrarelativistic acceleration freed of chaos and non-linear instabilities.

• The bubble acceleration regime is able to generate a quasi-monochromatic electron spectrum.

University Düsseldorf