Status of Polarized and Unpolarized Parton Distributions

Johannes Blümlein

DESY

- 1. Introduction
- 2. Unpolarized Parton Distributions
- 3. Polarized Parton Distributions
- 4. α_s and Λ_{QCD}
- 5. Future Avenues

1. Introduction

WHEN IS A PARTON ?

S. DRELL: Infinite Momentum Frame: P - large

 $au_{\rm int} \ll au_{
m life}$

$$\tau_{\rm int} \sim \frac{1}{q_0} = \frac{4Px}{Q^2(1-x)}$$

$$\tau_{\text{life}} \sim \frac{1}{\sum_{i} E_{i} - E} = \frac{2P}{\sum_{i} (k_{\perp i}^{2} + M_{i}^{2})/x_{i} - M^{2}} \simeq \frac{2Px(1-x)}{k_{\perp}^{2}}$$

$$\frac{\tau_{\rm int}}{\tau_{\rm life}} = \frac{2k_\perp^2}{Q^2(1-x)^2}$$

Stay away from $x \to 0$, since xP becomes too small. Stay away from $x \to 1$.

$$Q^2 \gg k_\perp^2.$$

$Main \ Research \ Objectives :$

- $rac{}{>}$ Precise Measurement of $\alpha_s(M_Z^2)$
- Reveal polarized and unpolarized parton densities at highest precision
- Precision tests of QCD
- Find novel sub-structures

 \implies Perturbative QCD :

NNLO calculations using new technologies \implies Lattice QCD :

Calculation of certain non-perturbative quantities a priori

3 Loop Splitting Functions

Moch, Vermasern, Vogt, 2004

3 Loop Coefficient Functions

Moch, Vermasern, Vogt, 2004/05

DIS: achievements and needs

Unpolarized Parton Distributions

Kinematic Domain

H1, ZEUS + fixed target data

Scaling violations of $F_2(x, Q^2)$.

J.B., H. Böttcher, A. Guffanti, 2004

The World Data on F_2

Experiment	x	Q^2, GeV^2	F_2	Norm
BCDMS (100)	0.35 - 0.75	11.75 - 75.00	51	1.018
BCDMS (120)	0.35 – 0.75	13.25 – 75.00	59	1.011
BCDMS (200)	0.35 – 0.75	32.50 - 137.50	50	1.017
BCDMS (280)	0.35 – 0.75	43.00 - 230.00	49	1.018
NMC (comb)	0.35 – 0.50	7.00 - 65.00	15	1.003
SLAC (comb)	0.30 - 0.62	7.30 – 21.39	57	1.003
H1 (hQ2)	0.40 - 0.65	200 - 30000	26	1.018
ZEUS (hQ2)	0.40 - 0.65	650 - 30000	15	1.001
proton			322	
BCDMS (120)	0.35 - 0.75	13.25 - 99.00	59	0.992
BCDMS (200)	0.35 – 0.75	32.50 - 137.50	50	0.993
BCDMS (280)	0.35 – 0.75	43.00 - 230.00	49	0.993
NMC (comb)	0.35 - 0.50	7.00 - 65.00	15	0.980
SLAC (comb)	0.30 - 0.62	10.00 - 21.40	59	0.980
deuteron			232	
BCDMS (120)	0.070 - 0.275	8.75 - 43.00	36	1.000
BCDMS (200)	0.070 - 0.275	17.00 - 75.00	29	1.000
BCDMS (280)	0.100 - 0.275	32.50 - 115.50	27	1.000
NMC (comb)	0.013 - 0.275	4.50 - 65.00	88	1.000
SLAC (comb)	0.153 - 0.293	4.18 - 5.50	28	1.000
non-singlet			208	
total			762	

• CUTS: 0.3 < x < 1.0 for F_2^p and F_2^d

$$\begin{array}{l} 0.0 \ < \ x \ < \ 0.3 \ {\rm for} \ F_2^{ns} = 2(F_2^p - F_2^d) \\ 4.0 \ < \ Q^2 \ < \ 30000 \ GeV^2 \text{,} \ W^2 \ > \ 12.5 \ GeV^2 \end{array}$$

Fully Correlated Error Calculation

• The fully correlated 1σ error for the parton density f_q as given by Gaussian error propagation is

$$\sigma(f_q(x)^2) = \sum_{i,j=1}^{n_p} \left(\frac{\partial f_q}{\partial p_i} \frac{\partial f_q}{\partial p_j} \right) \operatorname{cov}(p_i, p_j) , \qquad (1)$$

where the $\partial f_q / \partial p_i$ are the derivatives of f_q w.r.t. the parameters p_i and the $\operatorname{cov}(p_i, p_j)$ are the elements of the covariance matrix as determined in the fit.

- The derivatives $\partial f_q / \partial p_i$ at the input scale Q_0^2 can be calculated analytically. Their values at Q^2 are given by evolution.
- The derivatives evolved in MELLIN-N space are transformed back to *x*-space and can then be used according to the error propagation formula above.
- \implies As an example the derivative of f(x, a, b) w.r.t. parameter a in MELLIN–N space reads:

Fit Results

- Parameter values and Covariance Matrix at the input scale $Q_0^2 = 4.0 \, GeV^2$

$$xq_i(x, Q_0^2) = A_i x^{a_i} (1-x)^{b_i} (1+\rho_i x^{\frac{1}{2}} + \gamma_i x)$$

u_v	a	0.299 ± 0.007
	b	4.157 ± 0.031
	ho	0.751
	γ	28.833
d_v	a	0.488 ± 0.048
	b	6.609 ± 0.332
	ho	-1.690
	γ	17.247
$\Lambda^{(4)}_{QCD}$		$233 \pm 34 \; MeV$
$\chi^2/ndf = 630/757 = 0.83$		

• Covariance Matrix at the input scale $Q_0^2 = 4.0 \, GeV^2$

	$\Lambda^{(4)}_{QCD}$	a_{u_v}	b_{u_v}	a_{d_v}	b_{d_v}
$\Lambda^{(4)}_{QCD}$	1.15E-3				
a_{u_v}	1.03E-4	5.40E-5			
b_{uv}	-8.45E-5	1.71E-4	9.59E-4		
a_{d_v}	4.17E-4	8.84E-6	-4.35E-4	2.32E-3	
b_{d_v}	2.32E-3	4.21E-4	-2.28E-3	1.48E-2	1.10E-1

Heavy Flavor NS-contributions

NON-SINGLET 3-LOOP QCD ANALYSIS

Moments and Lattice Results

f	n	This Fit	MRST04	A02
u_v	2	0.288 ± 0.003	0.285	0.304
	3	0.084 ± 0.001	0.082	0.087
	4	0.0319 ± 0.0004	0.032	0.033
d_v	2	0.113 ± 0.004	0.115	0.120
	3	0.026 ± 0.001	0.028	0.028
	4	0.0078 ± 0.0004	0.009	0.010
$u_v - d_v$	2	0.175 ± 0.004	0.171	0.184
	3	0.058 ± 0.001	0.055	0.059
	4	0.0241 ± 0.0005	0.022	0.024

First lattice results on $u_v - d_v$, N = 2 yield promising values using overlap-fermions (QCDSF).

More results also are upcoming.

The Singlet Sector

Parton Densities: Relative Size

Ratios of Unpolarized PDFs

Ref.: A. Djouadi and S. Ferrag, hep-ph/0310209

Parton Distributions

Slope of F_2 at low x

Very likely, that the \overline{MS} -gluon is remains positive!

DIS: achievements and needs

PILE–UP EFFECTS:

Iterative vs Exact Solution of Evolution Equations

Blümlein, Riemersma, van Neerven, Vogt, 1996

Gluon Density

M. Klein, 2004: Projection for a possible measurement at HERA \implies of central importance to study the small x behaviour of the gluon distribution

$$\overline{d} - \overline{u}$$

Strange quark distribution

• CCFR : iron target, EMC effect. How large ? CAN HERMES MEASURE $s(x, Q^2)$?

$c\overline{c}$ Structure Function F_2

Mellin-space representation :

- S. Alekhin and J.B., 2004
- necessary for scheme-invariant evolution.
- fast and accurate access to heavy flavor Wilson coefficients.

Polarized Nucleons

How is the nucleon spin distributed over the partons?

 $S_n = \frac{1}{2} \left[\Delta(u + \bar{u}) + \Delta(d + \bar{d}) + \Delta(s + \bar{s}) \right] + \Delta G + L_q + L_g$

$$S_n = \frac{1}{2}$$

 $\Delta \Sigma = 0.138 \pm 0.082, \quad (0.150 \pm 0.061)$ $\Delta G = 1.026 \pm 0.554, \quad (0.931 \pm 0.679)$

EMC, 1987: THE NUCLEON SPIN IS NOT THE SUM OF THE LIGHT QUARK SPINS.

MEASURE:

POLARIZED PARTON DENSITIES: $\Delta q_i, \Delta G$

How can one access the parton angular momentum ?

POLARIZED HEAVY FLAVOR CONTRIBUTIONS.

• POLARIZED STRUCTURE FUNCTIONS CONTAIN ALSO TWIST 3 CONTRIBUTIONS.

How to unfold these terms ?

POLARIZED PARTON DENSITIES:

pioneering work: Dortmund GRSV, 1996, 2001 Analysis by other groups: AAC (Japan), 2000, 2004 J.B., H. Böttcher, 2002 Leader et al., 2002 Altarelli et al., 1997

NLO:
$$\alpha_s(M_z^2) = 0.113^{+0.10}_{-0.08}$$

J.B., H. Böttcher, 2002

Polarized Gluon Density

 \implies Currently slight move towards lower values.

Figure 12: Model fit to potential power corrections in $g_1(x, Q^2)$ as extracted from the world polarization asymmetry data in the present analysis (see text). Dashed line: model I, Eq. (70); dotted line: model II, Eq. (71). The full lines correspond to the parameterization (ISET=4) in the present analysis, to which the corresponding power correction model induces a perturbation. The shaded area corresponds to the 1σ correlated error.

COMPARISON WITH LATTICE MOMENTS:

	Moment	BB, NLO	QCDSF	LHPC/SESAM
Δu_v	0	0.926	0.889 ± 0.029	0.860 ± 0.069
	1	0.163 ± 0.014	0.198 ± 0.008	0.242 ± 0.022
	2	0.055 ± 0.006	0.041 ± 0.009	0.116 ± 0.042
Δd_v	0	-0.341	-0.236 ± 0.027	-0.171 ± 0.043
	1	-0.047 ± 0.021	-0.048 ± 0.003	-0.029 ± 0.013
	2	-0.015 ± 0.009	-0.028 ± 0.002	0.001 ± 0.025
$\Delta u_v - \Delta d_v$	0	1.267	1.14 ± 0.03	1.031 ± 0.081
	1	0.210 ± 0.025	0.245 ± 0.009	0.271 ± 0.025
	2	0.070 ± 0.011	0.069 ± 0.009	0.115 ± 0.049

1st moments: Still problematic.

HEAVY FLAVOR:

- g_1 : Watson, 1982; Vogelsang, 1990
- g_2 : J.B., Ravindran, van Neerven, 2003

Duality 05, Frascati, June 2005

SUM RULES AND INTEGRAL RELATIONS: Twist 2:

$$g_2(x,Q^2) = -g_1(x,Q^2) + \int_x^1 \frac{dy}{y} g_1(y,Q^2)$$

Wandzura, Wilczek, 1977; Piccione, Ridolfi 1998; J.B., A. Tkabladze, 1998 : with TM

$$g_3(x,Q^2) = 2x \int_x^1 \frac{dy}{y^2} g_4(y,Q^2)$$

J.B., N. Kochelev, 1996; J.B., A. Tkabladze, 1998 : with TM

TWIST 3:

INCLUDE NUCLEON MASS EFFECTS.

J.B., A. Tkabladze, 1998

$$g_{1}(x,Q^{2}) = \frac{4M^{2}x^{2}}{Q^{2}} \left[g_{2}(x,Q^{2}) - 2\int_{x}^{1} \frac{dy}{y} g_{2}(y,Q^{2}) \right]$$

$$\frac{4M^{2}x^{2}}{Q^{2}} g_{3}(x,Q^{2}) = g_{4}(x,Q^{2}) \left(1 + \frac{4M^{2}x^{2}}{Q^{2}} \right) + 3\int_{x}^{1} \frac{dy}{y} g_{4}(y,Q^{2})$$

$$2xg_{5}(x,Q^{2}) = -\int_{x}^{1} \frac{dy}{y} g_{4}(y,Q^{2})$$

Quark Helicity Distributions

Phenomenology of PDF's ...

Comparison with Δq **from Semi-Incl. Data**

 \Rightarrow *z*-range in the Semi-Incl. Analysis: 0.2 < z < 0.7

Inclusive + Semi-inclusive Analysis

D. de Florian, G. Navarro, R. Sassot, hep-ph/0504155

Parton densities at $Q^2 = 10 GeV^2$; error bands: $\Delta \chi^2 = 1; 2\%$.

.... allows very precise measurements

Example : Flavor Separation of polarized PDF's

$\Lambda_{ m QCD}$ and $lpha_s(M_Z^2)$

NLO	$\alpha_s(M_Z^2)$	expt	theory	Ref.
CTEQ6	0.1165	±0.0065		[1]
MRST03	0.1165	±0.0020	± 0.0030	[2]
A02	0.1171	± 0.0015	±0.0033	[3]
ZEUS	0.1166	±0.0049		[4]
H1	0.1150	± 0.0017	± 0.0050	[5]
BCDMS	0.110	±0.006		[6]
BB (pol)	0.113	±0.004	+0.009 -0.006	[7]

NNLO	$\alpha_s(M_Z^2)$	expt	theory	Ref.
MRST03	0.1153	±0.0020	±0.0030	[2]
A02	0.1143	± 0.0014	± 0.0009	[3]
SY01(ep)	0.1166	± 0.0013		[8]
$SY01(\nu N)$	0.1153	± 0.0063		[8]
BBG	0.1139	+0.0026/-0.0028		[9]

BBG: $N_f = 4$: non-singlet data-analysis at $O(\alpha_s^3)$: $\Lambda = 233 \pm 30 \text{ MeV}$

Alpha Collab: $N_f=2$ Lattice; non-pert. renormalization $\Lambda=245\pm16\pm16\,{\rm MeV}$

QCDSF Collab: $N_f = 2$ Lattice, pert. reno. $\Lambda = 249 + 13 + 13/-8 - 17 \text{ MeV}$ also other collab., (cf. PDG).

Future Avenues

HERA:

- Collect high luminosity for $F_2(x,Q^2)$, $F_2^{c\overline{c}}(x,Q^2)$, $g_2^{c\overline{c}}(x,Q^2)$, and measure $h_1(x,Q^2)$.
- Measure : $F_L(x, Q^2)$. This is a key-question for HERA.

RHIC & LHC:

• Improve constraints on gluon and sea-quarks: polarized and unpolarized.

JLAB:

• High precision measurements in the large x domain at unpolarized and polarized targets; supplements HERA's high precision measurements at small *x*.

ELIC:

• High precision measurements in the medium x domain; both unpolarized and polarized

The quest for large luminosity !

- What is the correct value of $\alpha_s(M_z^2)$? $\overline{\mathrm{MS}}$ -analysis vs. scheme-invariant evolution helps. Compare non-singlet and singlet analysis; careful treatment of heavy flavor.[Theory & Experiment]
- Flavor Structure of Sea-Quarks: More studies needed.[All Experiments]
- Revisit polarized data upon arrival of the 3-loop anomalous dimensions; NLO heavy flavor contributions needed.[Theory]
- QCD at Twist 3: $g_2(x, Q^2)$, semi-exclusive Reactions [High Precision polarized experiments, JLAB, EIC]
- Comparison with Lattice Results: α_s , Moments of Parton Distributions, Angular Momentum.
- Calculation of more hard scattering reactions at the 3–loop level: ILC, LHC
- Further perfection of the mathematical tools:
 ⇒ Algorithmic simplification of Perturbation theory in higher orders.
- Even higher order corrections needed ?