Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Institut für Kernphysik

First Workshop on Quark-Hadron Duality Frascati, June 6-8, 2005

3

• What is the relation of parton degrees of freedom and the low energy structure of hadrons?

- Do glueballs (ggg) and hybrids (qqg) exist?
- What is the origin of hadron masses ?
- How are hadrons modified when embedded in nuclei ?
- What is the role of chiral symmetry ?

Photoabsorption on Nucleons

broad and overlapping resonances
characteristic meson decay
tagging of resonances

Excited States of the Nucleon

Meson Photoproduction from the Proton

Nuclear Photoabsorption: γ + A

total cross section per nucleon

ρ Meson in the Nuclear Medium

effect on photoabsorption:

HIRATA, KATAGIRI, OCHI, AND TAKAKI PHYSICAL REVIEW C 66, 014612 (2002)

- cooperative effect of the interference in two-pion photoproduction processes
- collision broadening of Δ and N^{*}(1520)
- pion distortion in the nuclear medium

the change of the interference effect by the medium plays an important role

Medium Effects

<u>on mesons:</u>

absorption/rescattering modified meson-meson interaction chiral symmetry restoration meson-resonance coupling

Meson Photoproduction from the Proton

Collaboration

Meson Photoproduction from Nuclei

The Role of Chiral Symmetry Breaking

 m_{N} = 938 MeV >> $m_{q} \approx 5-10$ MeV determined by interaction among partons

- chiral symmetry = fundamental symmetry of QCD for massless quarks
- chiral symmetry broken on hadron level

To understand the origin of mass: can we (partially) restore chiral symmetry? <u>changes of hadron properties in the nuclear medium</u> Model predictions for ρ and ω mesons

Experimental Method: 4π Photon Spectrometer

ELSA E_e =3.5 GeV

Crystal Barrel

CBELSA/TAPS

Crystal Ball@MAMI/TAPS

ω-mass in nuclei from photonuclear reactions

J.G.Messchendorp et al., EPJ A11 (2001) 95

advantage:

- π ° γ large branching ratio (8 %)
- no $\rho\text{-contribution}~(\rho \rightarrow \pi^o \gamma$: 7 \cdot 10 $^{\text{-4}})$

disadvantage:

- π °-rescattering
- background reactions: $\gamma A \rightarrow 2 \pi \circ + X$
- mass resolution

ω-mass in nuclei from photonuclear reactions

J.G.Messchendorp et al., EPJ A11 (2001) 95

supression of background in the region of interest
visible shoulder in lineshape from mass shifted mesons

inclusive $\omega \rightarrow \pi^0 \gamma$ signal for LH₂ and Nb target

D. Trnka et al. PRL (2005) 192303

difference in line shape of ω signal for proton and nuclear target

contribution from ω in-medium decays

D. Trnka et al. PRL (2005) 192303

 ω decays in vacuum removed by subtracting ω mass distribution measured with LH₂ target (75%)

strength of in-medium ω decays concentrated around masses of 722 MeV \Rightarrow mass drop by about 8% at estimated baryon density of about 0.6 ρ_0

consistent with $m_{\omega} = m_0 (1 - 0.14 \rho/\rho_0)$

vector mesons

- $\rho \rightarrow e^+e^-$ in ultra-relativistic heavy-ion collisions (CERES/CERN)
- $\rho \rightarrow e^+e^-$ in pA collisions at 12 GeV (KEK)
- $\omega \rightarrow \pi^{o}\gamma$ by comparison of $p(\gamma, \omega)$ and $A(\gamma, \omega)$ (CBELSA/TAPS @ Bonn)
- $\Phi \rightarrow K^+K^-$ systematics from A(γ, ω) (LEPS@SPRing8)
- π p \rightarrow n ω on bound protons planned at HADES @ GSI

pseudoscalar mesons

•K⁺ and K⁻ mesons from yields in near threshold heavy-ion reactions (KAOS @ GSI)

scalar mesons

• `` σ ´´meson: $\pi^{o}\pi^{o}$ interaction (TAPS@MAMI, Crystal Ball)

charm sector

• J/ ψ , D: experiments planned at PANDA@FAIR

So far, experiments are in accordance with theoretical scenarios for changes of hadron properties in the nuclear medium.

Studying the in-medium behavior of hadrons is a promising approach to learn more about the origin of their mass.