First Workshop

on

Quark-Hadron Duality and the Transition to pQCD Laboratori Nazionali di Frascati 6-8 June 2005

> Quark Gluon Plasma and Hadron Gas on the Lattice Maria-Paola Lombardo

An informal overview geared towards Nuclear Experimental Colleagues

- The Critical Line
- The Hot Phase : Approaching a Quark Gluon Plasma
- The Hadronic Phase and The Resonance Gas Model
- Summary, the Main Caveat and a Major Challenge

Lattice studies = equilibrium studies :

Thermodynamics and spectrum; hope that quark gluon plasma will equilibrate during the evolution; equilibrium solution are steady state solution of the dynamical Fokker Planck operator; lattice calculations will help validanting simple models which can be studied out of equilibrium The Critical Line, 2003

From O. Philipsen and E. Laermann Ann. Rev. Nucl. Part. Phys. 2003

- 1. Fodor Z and Katz SD, JHEP 0203:014 (2002).
- 2. Allton CR et al., Phys. Rev. D 66:074507 (2002).
- 3. de Forcrand P and Philipsen O, Nucl. Phys. B642:290 (2002).
- 4. D'Elia M and Lombardo MP, Phys. Rev. D 1:074507 (2003).

The critical line, 2004

Z. Fodor, S. Katz 2004

Question 1. Sensitivity to quark mass values Question 2. Systematics not fully under control

The Hot Phase and the approach to a Quark Gluon Plasma Monitoring the approach to a free gas of quarks and gluons

$$P(T,\mu) = \frac{\pi^2}{45} T^4 \left(8 + 7N_c \frac{n_f}{4} \right) + \frac{n_f}{2} \mu^2 T^2 + \frac{n_f}{4\pi^2} \mu^4.$$

analytic continuation from real to imaginary μ_B of the Stephan-Boltzmann lattice result

Corrections to Free Field A. Vuorinen 2004:

$$P(T,\mu) = \frac{\pi^2}{45} T^4 \left(8 + 7N_c \frac{n_f}{4} \right) + \frac{n_f}{2} \mu^2 T^2 + \frac{n_f}{4\pi^2} \mu^4 + \dots$$

Alternatively (Rafelski, Letessier 2003, Quasiparticle models)

$$P(T,\mu) = \frac{f(\mu)}{45} \left(\frac{\pi^2}{45} T^4 \left(8 + 7N_c \frac{n_f}{4}\right) + \frac{n_f}{2} \mu^2 T^2 + \frac{n_f}{4\pi^2} \mu^4\right)$$

Trivial possibility: $f(\mu)$ is a <u>constant</u>.

0

Possible interpretation: a free field with an effective number of flavors N_{eff} different from N_f

$$P(T,\mu) - P(T,0) = (N_{eff}/n_f)(\frac{n_f}{2}\mu^2 T^2 + \frac{n_f}{4\pi^2}\mu^4) = (\frac{N_{eff}}{2}\mu^2 T^2 + \frac{N_{eff}}{4\pi^2}\mu^4)$$

 $f(\mu) = (N_{eff}/N_f)$ estimated on the lattice appear to be a constant for $T \ge 1.5T_c \ne 1$ i.e. $N_{eff} \ne N_f$

$\frac{T_c < T < 1.5T_c : a \text{ Strongly Coupled Quark Gluon Plasma?}}{\underset{\text{F. Di Renzo, M. D'Elia, MpL, in progress}}{\text{Model Plasma Plasma$

Interplay of thermodynamics and critical behaviour for

 $T_C < T < T_E \simeq 1.1 T_c$

 $log P(\mu,T) \propto (\mu-\mu_c)^\eta$

Incompatible with a free field for continuous transitions, and for first order transitions of finite strength

Survival of bound states at for $T_c < T < 1.6T_c$

Y. Asakawa, T.Hatsuda

Bound States and S(trongly interactive) Quark Gluon Plasma

The Hadronic Phase and the Hadron Resonance Gas Model

The *Hadron Resonance Gas* model might provide a description of QCD thermodynamics in the confined, hadronic phase of QCD

$$\frac{P(T,\mu) - P(T,0)}{T^4} \simeq F(T) (\cosh(\frac{\mu_B}{T} - 1))$$
$$F(T) \simeq \int dm \rho(m) (\frac{m}{T})^2 K_2(\frac{m}{T})$$

The Bielefeld Strategy

$$\frac{\Delta p(T,\mu_q)}{T^4} \simeq \sum_{n=1}^{n=3} c_{2n}(T) \left(\frac{\mu_q}{T}\right)^{2n} \quad .$$

up to $O(\mu_q^6)$ order.

F. Karsch, K. Redlich and A. Tawfik (2003)

Hadron Resonance Gas: a simple strategy:

(D'Elia,MpL, 2002, 2004)

Observables are periodic and continuous for imaginary chemical potential. (Roberge, Weiss, 1986)

$$O_e = ae_F + \sum be_F cos(N_c N_t \mu)$$
$$O_o = ao_F + \sum bo_F sin(N_c N_t \mu)$$

When HRG holds true, one term in the Fourier series should suffice. $(sinh(x) \rightarrow sin(x))$

$$n(\mu) = \frac{\partial P(\mu)}{\partial \mu} = Ksin(N_c N_t \mu)$$

HRG accurate up to $T \simeq .985T_c$

(No) Mismatch wrt HRG up to $T \simeq 0.985T_c$: direct check in an 'effective mass analysis' style:

 $Mismatch = n(\mu)/sin(N_c N_t \mu) - k$

The Critical Line from HRG

Kogut and Toublan (2004) use the hadron resonance gas model with a fixed energy criterium to draw the phase diagram:

The critical temperature as a function of μ_B is determined by lines of constant energy density: $\epsilon \simeq 0.5 - 1.0 \text{ GeV/fm}^3$.

Critical density from the lattice

D'Elia, MpL 2004

 $n(i\mu) = a_1 \sin(i\mu N_c N_T) + a_2 \sin(i2\mu N_c N_T)$

Analytic continuation up to $\mu = \mu_c(T)$:

 $n(\mu) = a_1 sinh(\mu N_c N_t) + a_2 sinh(i2\mu N_c N_T)$ Critical density at $T = .985T_c \ n_c(\mu_c)/T^3 \simeq 0.5$ Mass dependence of the Critical Density is Sizeable From derivatives: (Maxwell Relations)

 $\partial < \bar{\psi}\psi > /\partial\mu = \partial n(\mu)/\partial m$

Caveat: Lattice simulations still need being tuned towards physical values of the quark masses, and the continuum limit

Summary II : Results

 \star Critical line: slope nicely determined, endpoint still has to settle down.

* Revenge of Nuclear Physics !: <u>The hadronic phase easier than expected</u>, well described by a simple gas of resonances up to $T \simeq 0.98T_c$:

- $\star \begin{array}{c} \textbf{Region above } T_c \text{ richer than expected} \\ \textbf{Strongly Interactive Quark Gluon Plasma} \end{array}$
- 1. Termodynamics highly nonperturbative.
- 2. Persistence of bound states
- **3.** Influence of the critical line at negative μ_B^2

Summary III

Main challenge : Link the Static Properties measured on the Lattice with the Real Time evolution during the Collision

