1th International Workshop on Quark-Hadron Duality and the Transition to pQCD, Frascati, Italy, June 6 - 8, 2005

Higher Twist Effects in Polarized DIS

E. Leader (London), A. Sidorov (Dubna), D. Stamenov (Sofia)

OUTLINE

LSS: hep-ph/0503140 (JHEP)

• An important difference between the kinematic regions of the unpolarized and *polarized* data sets

A lot of the present data are at **moderate** Q^2 and W^2 :

$$Q^2 \approx 1 - 5 \, GeV^2, \ 4 < W^2 < 10 \, GeV^2$$

preasymptotic region

While in the determination of the PD in the unpolarized case we can cut the low Q² and W² data in order to eliminate the less known non-perturbative HT effects, it is impossible to perform such a procedure for the present data on the spin-dependent structure functions without loosing too much information.

HT corrections should be important in polarized DIS !

Theory In QCD
$$g_1(x,Q^2) = g_1(x,Q^2)_{LT} + g_1(x,Q^2)_{HT}$$

 $g_1(x,Q^2)_{LT} = g_1(x,Q^2)_{pQCD} + \frac{M^2}{Q^2}h^{TMC}(x,Q^2) + O(\frac{M^4}{Q^4})$
 $g_1(x,Q^2)_{HT} = h(x,Q^2)/Q^2 + O(\frac{1}{Q^4})$
dynamical HT power corrections ($\tau = 3,4$)
 $=>$ non-perturbative effects (model dependent)
In NLO pQCD

$$g_1(x,Q^2)_{pQCD} = \frac{1}{2} \sum_q^{N_f} e_q^2 \left[(\Delta q + \Delta \overline{q}) \otimes (1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \frac{\delta C_G}{N_f} \right]$$

 $\delta C_q, \delta C_G - Wilson$ coefficient functions

polarized PD evolve in Q^2

N_f(=3) - a number of flavours

according to NLO DGLAP eqs.

The data on A_1 are really the experimental values of the quantity

$$\frac{A_{||}^{N}}{D} = (1+\gamma^{2})\frac{g_{1}^{N}}{F_{1}^{N}} + (\eta-\gamma)A_{2}^{N}$$

$$= A_{1}^{N} + \eta A_{2}^{N} \qquad \gamma \approx \eta \text{ and } A_{2} \text{ small}$$
very well approximated with even when $\gamma(\eta)$ can not be $(1+\gamma^{2})\frac{g_{1}^{N}}{F_{1}^{N}}$

1

neglected

verv

Methods of analysis

Fit to g_1/F_1 data - g_1/F_1 fit => PD(g_1/F_1) or Set 1

$$\begin{bmatrix} g_{1}(x,Q^{2}) \\ F_{1}(x,Q^{2}) \end{bmatrix}_{\exp} \overset{\chi^{2}}{\iff} \frac{g_{1}(x,Q^{2})_{LT}}{F_{1}(x,Q^{2})_{LT}} + \frac{h^{g_{1}/F_{1}}(x)}{Q^{2}}$$
$$(g_{1})_{QCD} = (g_{1})_{LT} + (g_{1})_{HT}$$
$$(F_{1})_{QCD} = (F_{1})_{LT} + (F_{1})_{HT}$$

$$\Rightarrow h^{g_1/F_1} \approx 0 \Rightarrow \frac{(g_1)_{HT}}{(g_1)_{LT}} \approx \frac{(F_1)_{HT}}{(F_1)_{LT}}$$

The HT corrections to g_1 and F_1 approximately compensate each other in the ratio g_1/F_1 and the PPD extracted this way are less sensitive to HT effects

LSS: EPJ C23 (2002) 479 hep-ph/0309048

Fit to g_1 data - g_1 +HT fit => PD(g_1 +HT) or Set 2 $\left[\frac{g_1(x,Q^2)}{F_1(x,Q^2)}\right]_{\text{exp}} F_1(x,Q^2)_{\text{exp}} = g_1(x,Q^2)_{\text{exp}} \iff g_1(x,Q^2)_{LT} + h^{g_1}(x)/Q^2$ F_2^{NMC} , R_{1008} (SLAC) in model independent way HT corrections to g₁ cannot be compensated because the HT corrections to $F_1(F_2 \text{ and } R)$ are absorbed in the phenomenological parametrizations of the data on F₂ and R. Input PD $\Delta f_i(x, Q_0^2) = A_i x^{\alpha_i} f_i^{MRST}(x, Q_0^2)$ $Q_0^2 = 1 \, GeV^2, A_i, \alpha_i - free \, par.$ $h^{p}(x_{i}), h^{n}(x_{i}) - 10$ parameters (i = 1,2,...5) to be determined from a fit to the data **8-2(SR) = 6 par. associated with PD;** positivity bounds imposed by **MRST'02** unpol. PD $g_{4} = (\Delta u + \Delta u)(Q^{2}) - (\Delta d + \Delta d)(Q^{2}) = F - D = 1.2670 \pm 0.0035$

 $a_8 = (\Delta u + \Delta \bar{u})(Q^2) + (\Delta d + \Delta \bar{d})(Q^2) - 2(\Delta s + \Delta \bar{s})(Q^2) = 3F - D = 0.585 \pm 0.025$

Flavor symmetric sea convention: $\Delta u_{sea} = \Delta \overline{u} = \Delta d_{sea} = \Delta \overline{d} = \Delta s = \Delta \overline{s}$

RESULTS OF ANALYSIS

$$(\Delta u + \Delta \overline{u}), (\Delta d + \Delta \overline{d}) \text{ well determined}$$

- ($\Delta s + \Delta s$) reasonably well determined and negative if accept for a_8 its SU(3) symmetric value $a_8 = 3F-D = 0.58$
- ΔG not well constrained

$$PD(g_1^{NLO} + HT) \Leftrightarrow PD(g_1^{NLO} / F_1^{NLO})$$

$$\chi^2_{DF,NLO} = 0.872 \Leftrightarrow \chi^2_{DF,NLO} = 0.874$$

In g₁ data fit HT corrections are important !

The two sets of polarized PD are very close to each other, especially for u and d quarks.

Higher twist effects

- The size of HT coorections to g₁ is NOT negligible
- The shape of HT depends on the target
- Thanks to the very precise JLab Hall A data the higher twist corrections for the neutron target are now much better determined at large x.

$$\int_{0}^{1} dx h^{g_{1}}(x) = \frac{4}{9} M^{2}(d_{2} + f_{2})$$

HT (\tau=4)

Our result is in agreement with the instanton model predictions (*Balla et al., NP B510, 327,* 1998) but disagrees with the renormalon calculations (*Stein, NP 79, 567, 1999*).

LO QCD approximation - NOT reasonable in the preasymptotic region

- $\alpha_s(Q^2)$ is large
- HT effects are large

Dependence of χ^2 on HT corrections

Fit	LO	NLO	LO+HT	NLO+HT
	HT=0	HT=0		
χ^2	249.8	212.5	153.8	149.8
DF	185-8	185-6	185-16	185-16
χ^2/DF	1.41	1.19	0.910	0.886

Not easy to compare directly the results of the two analyses

Effect of COMPASS A_1^d data (*hep-ph/0501073*) on polarized PD and HT

- The statistical accuracy at small x: 0.004 < x < 0.03 is considerably improved
- $\Delta u_v(x)$ and $\Delta d_v(x)$ do **NOT** change in the exp. region
- $x|\Delta s(x)|$ and $x \Delta G(x)$ decrease, but the corresponding curves lie within the error bands

LSS'05: hep-ph/0503140

COMPASS (high p_t hadron pairs with $Q^2 > 1 \text{ GeV}^2$) – *hep-ex/0501056* $\Delta G/G = 0.06 \pm 0.31(\text{stat}) \pm 0.06(\text{sys})$ at $\langle x_G \rangle = 0.13 \pm 0.08$

LSS'05 result

 $\Delta G/G = \begin{array}{c} 0.058 \quad \text{Set 1/NLO(MS)} \\ 0.095 \quad \text{Set 2/NLO(MS)} \end{array}$

G(x,Q2) is the NLO MRST'02 unpolarized gluon density

Effect of the COMPASS data on the HT values

- The new values are in **good agreement** with the old ones
- The COMPASS data are in the DIS region
 their effect on HT is negligible

for x=0.13, $Q^2=2 \text{ GeV}^2$

Factorization scheme dependence

NLO polarized PD in MS and JET schemes

In NLO QCD the valence quarks and gluons should be the same in both schemes, while

$$\Delta s(x,Q^2)_{JET} = \Delta s(x,Q^2)_{\overline{MS}} + \frac{\alpha_S}{2\pi} (1-x) \otimes \Delta G(x,Q^2)_{\overline{MS}}$$

n=1:
$$\Delta \Sigma_{JET} = \Delta \Sigma (Q^2)_{\overline{MS}} + 3 \frac{\alpha_S (Q^2)}{2\pi} \Delta G (Q^2)_{\overline{MS}}$$

 $\Delta \Sigma_{\text{JET}}$ is a \textbf{Q}^{2} independent quantity

$$\Delta \Sigma_{\rm JET}({\rm DIS}) <=> \Delta \Sigma ({\rm Q2} \sim \Lambda^2_{\rm QCD})$$

CQM, chiral models

 $\mathbf{Q}^2 = \mathbf{1} \ \mathbf{G} \mathbf{e} \mathbf{V}^2$

Fit	$\Delta\Sigma(Q^2)_{\overline{MS}}$	$\Delta G(Q^2)_{JET}$	$\Delta\Sigma_{JET}$
LSS01	0.21 ± 0.10	0.68 ± 0.32	0.37 ± 0.07
LSS05	0.19 ± 0.06	0.29 ± 0.32	0.29 ± 0.08

Our numerical results for PPD are in a good agreement with pQCD How the choice of the factorization scheme for $(g_1)_{LT}$ influence the higher twist results?

 $g_1(x,Q^2) = g_1(x,Q^2)_{LT} + h^N(x)/Q^2$

Impact of positivity constraints on polarized PD

Bar.: Barone et al., EPJ C12 (2000) 243

MRST02: EPJ C28 (2003) 455

At large x: $s(x)_{Bar} > s(x)_{MRST02}$ $G(x)_{Bar} < G(x)_{MRST02}$

NLO(MS)

Flavour symmetric sea convention:

 $\Delta u_{sea} = \Delta \overline{u} = \Delta d_{sea} = \Delta \overline{d} = \Delta s = \Delta \overline{s}$

- Δu_v and Δd_v of the two sets are closed to each other
- Δs and ΔG are **significantly** different
- Δs and ΔG are weakly constrained from the data, especially for high x. That is why the role of positivity constraints is very important for their determination in this region.

NLO QCD PPD (MS) obtained by different groups

 $x\Delta s$ and $x\Delta G$ are weakly constrained from the present data on inclusive DIS

- GRSV: Glück et al., hep-ph/0011215
- BB: Blümlein, Böttcher, hep-ph/0203155
- AAC: Goto et. al., hep-ph/0312112

LSS'05: Leader at al., hep-ph/0503140

 $x\Delta u_v$ and $x\Delta d_v$ well consistent

Impact of positivity constraints on $x\Delta s(x, Q^2)$

GRSV, BB and AAC have used the **GRV unpolarized** PD for constraining their PPD, while LSS have used those of **MRST'02**.

As a result, $x|\Delta s(x)|$ (LSS) for x > 0.1 is **larger** than the magnitude of the polarized strange sea densities obtained by the other groups.

Role of unpolarized PD in determining PPD at large x

- At large x the unpolarized GRV and MRST'02 gluons are practically **the same**, while $xs(x)_{GRV}$ is much smaller than that of MRST'02.
- For the adequate determination of $x\Delta s$ and $x\Delta G$ at large x, the role of the corresponding **unpolarized** PD is very important.
- Usually the sets of unpolarized PD are extracted from the data in the DIS region using cuts in Q^2 and W^2 chosen in order to minimize the higher twist effects.
- The latter have to be determined with good accuracy at large x in the **preasymptotic** (Q^2, W^2) region too.

SUMMARY

- Two sets of **polarized** PD in both the MS and the JET schemes are extracted from the world DIS data including the new **JLab** and **COMPASS** data
- The NLO PPD determined in the two schemes are in a **good agreement** with the pQCD predictions
- The size of **HT**(g1) corrections have been extracted from the data in *model independent* way and found to be NOT negligible
- While the HT corrections to g_1 and F_1 compensate each other in g_1/F_1 , the HT(g_1) are important in the analysis of the g_1 data
- ∆s and ∆G are not well determined from the data
 the effect of the positivity conditions used to constrain them is essential, especially at high x
- A more precise determination of **unpolarized** PD in the **preasymptotic** region is very important