First Workshop on Quark-Hadron Duality and the Transition to pQCD

Spin Structure of the Nucleon and Aspects of Duality

Zein-Eddine Meziani Temple University

Frascati, June 06, 2005

- Moments of spin structure functions and sum rules
- Size of higher twists and duality
- Polarizabilities; spin and color
- Conclusion

Aspects of duality

Duality in spin structure functions? Local versus Global

- Moments of spin structure functions
 - First Moments:
 - Sispersive Sum rules (Gerasimov-Drell-Hearn, Bjorken, Ellis-Jaffe,Burkhardt-Cottingham)
 - → Higher moments:
 - ♦ Spin polarizabilities
 - ♦ Color polarizabilities
- Q² evolution is important to investigate aspects of duality in the response
 - Low Q^{2,} low W spectrum (resonances) dominate response
 - \rightarrow High Q², high W (DIS) dominate the response.
 - Within OPE size of higher twists as a measure of how well duality is working

Response of scalar quark in a harmonic oscillator vs scaling variable u Melnitchouk et al.

Moments of spin structure functions

Dispersive sum rules

Forward Virtual Compton Scattering Amplitudes $S_1(\nu, Q^2), \quad S_2(\nu, Q^2)$ The spin structure functions $G_{1,2}(\nu, Q^2)$ are proportional to the virtual Compton amplitudes: $\text{Im}S_i(\nu, Q^2) = 2\pi G_i(\nu, Q^2)$ +1/2-1/2 -1/2 -1/2**Dispersion Relations** $S_1(\nu, Q^2) = 4 \int_{Q^2/2M}^{\infty} \frac{\nu' G_1(\nu', Q^2)}{{\nu'}^2 - {\nu'}^2} d\nu'$ (a) $S_2(\nu, Q^2) = 4 \int_{Q^2/2M}^{\infty} \frac{\nu' G_2(\nu', Q^2)}{\nu'^2 - \nu^2} d\nu'$ (b)

 Unitarity relates forward scattering amplitudes to physical cross sections

• At low energy $S_{1,2}$ can be evaluated using:

Low-energy theorem
Chiral perturbation
theory

(a) leads to the extended GDH sum rule valid at all Q^2 . (b) leads to the Burkhardt-Cottingham sum rule.

June 6, 2005

Dispersive Sum rules; Useful for What?

• Check basic assumptions going into the derivation of the sum rule

- Causality and analyticity
- → Low energy effective theory
- Asymptotic behavior of the amplitudes
- A way to understand the physical content of low energy constants
- ⊙ Use of the sum rule to determine the low-energy scattering amplitude

Tools (Hall A)

Tools (Hall B)

- Large kinematical coverage
- detection of charged and neutral particles
- •Multiparticle final state

Polarized NH₃ &ND₃ 75% (NH₃) or 30% (ND₃) Longitudial polarization only

Acceptance $\sim 2.5\pi$

CEBAF Large Acceptance Spectrometer

GDH Sum Rule on the Proton (MAMI+ELSA)

Sum rules at finite Q^2

Ji and Osborne, Phys. Lett. B472, 1 (2000)

GDH sum rule and Chiral Perturbation (low resolution and long time exposure picture of the nucleon)

OPE and Bjorken sum rule (High resolution and short time Exposure picture of the nucleon

g_1 and g_2 extracted at constant Q^2

Proton

eg1b data: Preliminary Data analysis: Y. Prok,UVA

eg1a data: R. Fatemi et al. PRL, 91: 222002 (2003)

Burkhardt-Cottingham Sum Rule (1965-1966)

$$\Gamma_2(Q^2) = \int_0^1 g_2(x, Q^2) \, dx = 0$$

• Dispersion relation for a spin-flip Compton amplitude

- \rightarrow Causality
- → Analyticity
- Absence of a J=0 pole with non polynomial residue

• Doesn't follow from Operator Product Expansion and is valid at all Q²

• Many scenarios of g₂'s low x behavior which would invalidate the sum rule are discussed in the literature.

Moments of Structure Functions

$$\Gamma_1(Q^2) = \int_0^1 g_1(x, Q^2) \, dx = \mu_2 + \frac{\mu_4}{Q^2} + \frac{\mu_6}{Q^4} + \cdots$$

leading twist higher twist

 $\mu_2^{p,n}(Q^2) = (\pm \frac{1}{12}g_A + \frac{1}{36}a_8) + \frac{1}{9}\Delta\Sigma$ + pQCD corrections

 $g_A = 1.257$ and $a_8 = 0.579$ are the triplet and octet axial charge, respectively $\Delta \Sigma$ = singlet axial charge

$$g_{A} = \Delta u - \Delta d$$

$$a_{8} = \Delta u + \Delta d - 2\Delta s$$

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$

W	
7	Co
	¥

June 6, 2005

L.N. di Frascati, Italy

pQCD radiative corrections

Study of Higher Twists

$$\mu_4(Q^2) = \frac{M^2}{9} \begin{bmatrix} a_2(Q^2) + 4d_2(Q^2) + 4f_2(Q^2) \end{bmatrix}$$

Twist - 2 Twist - 3 Twist - 4
(TMC)

where a_2 , d_2 and f_2 are higher moments of g_1 and g_2

e.g.
$$d_2(Q^2) = \int_0^1 x^2 [2g_1(x,Q^2) + 3g_2(x,Q^2)] dx = \int_0^1 x^2 \overline{g_2}(x,Q^2) dx$$

$$a_2(Q^2) = \int_0^1 x^2 g_1(x, Q^2) \, dx$$

• To extract f_2 , d_2 needs to be determined first.

•Both d_2 and f_2 are required to determine the color polarizabilities

June 6, 2005

Twist-4 Matrix element f_2

Adding $1/Q^6$ term gives the same f_2 and μ_6 with $\mu_8 = (0.00 \pm 0.03)M^2$

If one performs a one parameter fit down to $Q^2 = 0.5 \text{ GeV}^2$; $f_2 = -0.014 \pm 0.010$

If one performs a one parameter fit for $Q^2 > 1 \text{ GeV}^2$; $f_2 = 0.012 \pm 0.029$

Z.-E. M, W. Melnitchouk et al., Phys. Lett. B613,148 (2005June 6, 2005 L.N. di Frascat

$$\begin{aligned} \Delta \Gamma_1^n(Q^2) &\equiv \Gamma_1^n(Q^2) - \mu_2^n(Q^2) \\ &= \frac{\mu_4^n(Q^2)}{Q^2} + \frac{\mu_6^n(Q^2)}{Q^4} + \mathcal{O}\left(\frac{1}{Q^6}\right) \end{aligned}$$

$$\mu_4^n = \frac{1}{9}M^2 \left(a_2^n + 4d_2^n + 4f_2^n \right)$$

$$f_2^n = 0.033 \pm 0.005$$
, $\mu_6^n = (-0.019 \pm 0.002)M^4$

$$f_2^n = 0.034 \pm 0.043 \;,\; \mu_6^n = (-0.019 \pm 0.017) M^4$$

Proton Analysis

World data +

 $f_2 = 0.039^{+0.037}_{-0.043}$

 $\mu_6/M^4 = 0.011^{+0.017}$

- 0.013

EG1a data: R. Fatemi et al., PRL, 91 222002 (2003)

Osipenko et al. Phys. Lett. B 609, 258 (2005)

Bjorken Sum Q2 evolution and higher twists

Color polarizabilities

How does the gluon field respond when a nucleon is polarized ?

Define color magnetic and electric polarizabilities (in nucleon rest frame):

$$d_2 = (\chi_E + 2\chi_B)/8$$
$$f_2 = (\chi_E - \chi_B)/2$$

 d_2 and f_2 represent the response of the color \vec{B} & \vec{E} fields to the nucleon polarization

Scale dependence of d_2

Adding the elastic contribution

Generalized Spin Polarizabilities of the Neutron

$$T(\nu, Q^2) = \varepsilon'^* \cdot \varepsilon f_T(\nu, Q^2) + f_L(\nu, Q^2) + i\sigma \cdot (\varepsilon'^* \times \varepsilon) g_{TT}(\nu, Q^2) - i\sigma \cdot [(\varepsilon'^* - \varepsilon) \times \hat{q}] g_{LT}(\nu, Q^2)$$

$$\operatorname{Re} g_{TT}^{\operatorname{nonpole}}(\nu, Q^2) = \frac{2\alpha_{em}}{M^2} I_A(Q^2)\nu + \gamma_0(Q^2)\nu^3 + \mathcal{O}(\nu^5)$$

$$\operatorname{Re} g_{LT}^{\operatorname{nonpole}}(\nu, Q^2) = \frac{2\alpha_{em}}{M^2} Q I_3(Q^2) + Q \delta_{LT}(Q^2)\nu^2 + \mathcal{O}(\nu^4)$$

$$\begin{split} \mathbf{\gamma_0}(Q^2) &= \frac{16M^2\alpha_{\rm em}}{Q^6} \int_0^{x_0} x^2 \left\{ g_1(x,Q^2) - \frac{Q^2}{\nu^2} g_2(x,Q^2) \right\} \, dx \\ \mathbf{\delta_{LT}}(Q^2) &= \frac{16M^2\alpha_{\rm em}}{Q^6} \int_0^{x_0} x^2 \left\{ g_1(x,Q^2) + g_2(x,Q^2) \right\} \, dx \\ \mathbf{\delta_{LT}}(Q^2) \to \frac{1}{3} \mathbf{\gamma_0}(Q^2), \quad Q^2 \to \infty \end{split}$$

Spin polarizabilities at low Q^2

Q² evolution of the Spin Polarizabilities

Έ

Conclusion

- The determination of Γ_1 below Q² of 1 GeV, dominated by the resonance contributions, is important to gauge the size higher twists and to extract the twist-4 matrix element f2.
- Higher twists are overall small which might indicate that "global duality" holds
- The Burkhardt-Cottingham sum rule seems verified in ³He and the neutron within errors for Q² < 1 GeV²; a region dominated by the elastic and Delta resonance contributions which approximately cancel each other.
- Neutron d₂ⁿ resonance contribution is small but finite. d₂ⁿ is dominated by the elastic contribution below 1 GeV²
- Precision measurements of g_1 and g_2 in the range $1 < Q^2 < 4 \text{ GeV}^2$ are needed for reducing the error on the extraction of the color polarizabilities. This needs to be pursued at JLab 11 GeV.
- More investigation is needed to understand the discrepancy between chiral perturbation calculations and the data for the spin polarizabilities δ_{LT} at low Q^2

