INFN/JLab Duality-05 Workshop, June 6-9, 2005. Spin-Flavor Decomposition and Quark-Hadron Duality

in Polarized Semi-Inclusive Deep-Inelastic Scattering

Xiaodong Jiang, Rutgers University.

Semi-inclusive deep-inelastic scattering (SIDIS) on polarized \vec{p} , \vec{d} and ³He (\vec{n}) targets at Jefferson Lab will provide precision data to improve our understanding of nucleon's spin-flavor structure.

- Double-spin asymmetry A_{1N}^h and the combined asymmetry $A_{1N}^{\pi^+\pm\pi^-}$ on \vec{p} and \vec{d} targets: Semi-SANE experiment (E04-113) at Hall C.
- Extracting Δu_v , Δd_v from $A_{1N}^{\pi^+ \pi^-}$ at LO and NLO.
- Extracting the polarized sea asymmetry $\Delta \bar{u} \Delta \bar{d}$.
- Next-to-leading order global QCD fit on both DIS and SIDIS data.

- Asymmetries on a polarized ³He (\vec{n}) target are sensitive to Δd .
- With the polarized ³He target in Hall A, precisions on A_{1n}^h can be improved by an order of magnitude.

Quark-hadron duality links polarized SIDIS with meson production:

- Two types of duality (hard scattering duality and fragmentation duality) corresponding to two energy scales (Q^2 and $z = E_h/\nu$) in SIDIS.
- Should we expect quark-hadron duality to work in spin-related observables ?

Flavor Tagging in Semi-Inclusive DIS

Two energy scales are involved. Assuming the leading order naive x-z factorization:

$$A_{1N}^{h}(x,Q^{2},z) \equiv \frac{\Delta\sigma^{h}(x,Q^{2},z)}{\sigma^{h}(x,Q^{2},z)} = \frac{\sum_{f} e_{f}^{2} \Delta q_{f}(x,Q^{2}) \cdot D_{f}^{h}(z,Q^{2})}{\sum_{f} e_{f}^{2} q_{f}(x,Q^{2}) \cdot D_{f}^{h}(z,Q^{2})}$$

Each asymmetry measurement provides an independent constrain on Δq_f .

HERMES Flavor Decomposition: $\vec{A} = \mathcal{P}_{f}^{h}(x) \cdot \vec{Q}$

From measurements: $\vec{A} = \left(A_{1p}^{\pi^+}, A_{1p}^{\pi^-}, A_{1d}^{\pi^+}, A_{1d}^{\pi^-}, A_{1d}^{K^+}, A_{1d}^{K^-}, A_{1p}, A_{1d}\right)$ Solve for: $\vec{Q} = \left(x\Delta u, x\Delta d, x\Delta \bar{u}, x\Delta \bar{d}, x\Delta s\right)$.

Calculate "Purity" from a LUND based Monte Carlo:

Assumes:

Leading order x-z factorization and current fragmentation.

Isospin symmetry and charge conjugation. Purity from Monte Carlo.

The Semi-SANE Experiment at Jefferson Lab Hall C

E04-113: P. Bosted, D. Day, X. Jiang and M. Jones co-spokespersons

ANL, Duke, FIU, Hampton, JLab, Kentucky, UMass, Norfolk, ODU, RPI, Rutgers, Temple, UVa, W&M, Yerevan, Regina, IHEP-Protvino.

High precision asymmetry data in deep-inelastic $\vec{N}(\vec{e}, e'h)$ ($N = p, d, h = \pi^{\pm}, K^{\pm}$).

• $E_0 = 6$ GeV, $P_B = 0.80$.

- *e*-Arm: a calorimeter array $@30^{\circ}$.
- *h*-Arm: HMS spectrometer @10.8°, 2.71 GeV/c, $z \approx 0.5$. Particle ID detectors for π/K separation.
- Target: polarized NH₃ (\vec{p}) and LiD ($\vec{d} = \vec{p} + \vec{n}$).

Approved for 25 days of beam time. Significant improvements on the statistical accuracy of $A_{1N}^{\pi^{\pm}}$. First data on $A_{1p}^{K^{\pm}}$.

Interpretation of SIDIS Beyond the Leading Order

What if the naive LO *x*-*z* factorization doesn't hold exactly ? Extended the interpretation of SIDIS beyond LO (Christova and Leader, NPB 607 (2001) 369, de Florian, Navarro and Sassot hep-ex/0504155 and PRD.)

• At NLO the naive x-z factorization is violated in a calculable way.

SIDIS Cross Sections at the Next-to-Leading-Order

$$q(x,Q^2) \cdot D(z,Q^2) \Rightarrow \int \frac{dx'}{x'} \int \frac{dz'}{z'} q\left(\frac{x}{x'}\right) C(x',z') D\left(\frac{z}{z'}\right) = q \otimes C \otimes D$$

C are well-known Wilson coefficients (D. Graudenz, NPB432, 351(1994)).

$$\Delta \sigma^{h} = \sum_{i} e_{i}^{2} \Delta q_{i} \left[1 + \otimes \frac{\alpha_{s}}{2\pi} \Delta C_{qq} \otimes \right] D_{q_{i}}^{h} + \left(\sum_{i} e_{i}^{2} \Delta q_{i} \right) \otimes \frac{\alpha_{s}}{2\pi} \Delta C_{qg} \otimes D_{G}^{h} + \Delta G \otimes \frac{\alpha_{s}}{2\pi} \Delta C_{gq} \otimes \left(\sum_{i} e_{i}^{2} D_{q_{i}}^{h} \right)$$

Isospin symmetry and charge conjugation: $D_G^h = D_G^{\bar{h}}$, $\sum_i e_i^2 D_{q_i}^h = \sum_i e_i^2 D_{q_i}^{\bar{h}}$. Higher order terms which have gluons involved vanish in $\pi^+ - \pi^-$ observables to all orders of QCD. $A_{1N}^{\pi^+ - \pi^-}$ is theoretically clean.

From $A_{1N}^{\pi^+ - \pi^-}(x)$ to $\Delta u_v(x)$ and $\Delta d_v(x)$

E. Christova and E. Leader, NPB607,369 (2001):

$$\frac{\Delta \sigma_{p}^{\pi^{+}} - \Delta \sigma_{p}^{\pi^{-}}}{\sigma_{p}^{\pi^{+}} - \sigma_{p}^{\pi^{-}}} = \frac{(4\Delta u_{v} - \Delta d_{v}) \left[1 + \otimes(\alpha_{s}/2\pi)\Delta C_{qq}\otimes\right] D_{u}^{\pi^{+} - \pi^{-}}}{(4u_{v} - d_{v}) \left[1 + \otimes(\alpha_{s}/2\pi)C_{qq}\otimes\right] D_{u}^{\pi^{+} - \pi^{-}}}$$

$$\frac{\Delta \sigma_{d}^{\pi^{+}} - \Delta \sigma_{d}^{\pi^{-}}}{\sigma_{d}^{\pi^{+}} - \sigma_{d}^{\pi^{-}}} = \frac{(\Delta u_{v} + \Delta d_{v}) \left[1 + \otimes(\alpha_{s}/2\pi)\Delta C_{qq}\otimes\right] D_{u}^{\pi^{+} - \pi^{-}}}{(u_{v} + d_{v}) \left[1 + \otimes(\alpha_{s}/2\pi)C_{qq}\otimes\right] D_{u}^{\pi^{+} - \pi^{-}}}$$

$$\frac{\Delta \sigma_{He}^{\pi^{+}} - \Delta \sigma_{He}^{\pi^{-}}}{\sigma_{He}^{\pi^{+}} - \sigma_{He}^{\pi^{-}}} = \frac{(4\Delta d_{v} - \Delta u_{v}) \left[1 + \otimes(\alpha_{s}/2\pi)\Delta C_{qq}\otimes\right] D_{u}^{\pi^{+} - \pi^{-}}}{(7u_{v} + 2d_{v}) \left[1 + \otimes(\alpha_{s}/2\pi)C_{qq}\otimes\right] D_{u}^{\pi^{+} - \pi^{-}}}}$$

- Δu_v and Δd_v are non-singlets which do not mix with gluon and sea densities.
- Data from two targets are needed to extract Δu_v and Δd_v . Measurements on the third target provide extra constrains.
- Proton data are mostly sensitive to Δu_v , neutron data (³He) are mostly sensitive to Δd_v .

From $\Delta u_v(x)$ and $\Delta d_v(x)$ to $\Delta \bar{u}(x) - \Delta \bar{d}(x)$:

Once we obtain $\Delta u_v(x)$ and $\Delta d_v(x)$ at any QCD-order, $\Delta \bar{u}(x) - \Delta \bar{d}(x)$ can be extracted to the same order by combining with the inclusive data.

$$\Delta \bar{u}(x) - \Delta \bar{d}(x) = \frac{1}{2} (\Delta u + \Delta \bar{u} - \Delta d - \Delta \bar{d} + \Delta d_v - \Delta u_v)$$

where $\Delta q_{NS}(x) = \Delta u + \Delta \bar{u} - \Delta d - \Delta \bar{d}$ can be extracted from inclusive data.

At LO:
$$\Delta q_{NS}(x) = 6(g_1^p(x) - g_1^n(x)).$$

"Bjorken Sum Rule" links the moments at all orders of QCD (Sissakian et al. PRD68, 031502 (2003)).

$$2\int_{0}^{1} (\Delta \bar{u} - \Delta \bar{d}) dx + \int_{0}^{1} (\Delta u_{v} - \Delta d_{v}) dx = \left|\frac{g_{A}}{g_{V}}\right| = 1.2670 \pm 0.0035$$

To obtain
$$A_{1N}^{\pi^+-\pi^-}$$
 we need:

Well-controlled phase space and hadron PID

$$A_{1N}^{\pi^+ - \pi^-} = \frac{\Delta \sigma_N^{\pi^+} - \Delta \sigma_N^{\pi^-}}{\sigma_N^{\pi^+} - \sigma_N^{\pi^-}} = \frac{A_{1N}^{\pi^+} - A_{1N}^{\pi^-} \cdot r}{1 - r}, \quad r = \frac{\sigma^{\pi^-}}{\sigma^{\pi^+}}.$$

Jefferson Lab E04-113: Expected Results on Δq

4

$$E_0=6$$
 GeV, $\langle Q^2
angle=2.2$ GeV 2

$$\Delta u_v = \Delta u - \Delta \bar{u}$$
$$\Delta d_v = \Delta d - \Delta \bar{d}$$

Tow independent methods of flavor decomposition:

i, Christova-Leader method.

ii, "Purity" at a fixed-z.

Statistical uncertainties dominate.

Flavor Asymmetry in the Nucleon Sea

Fermilab $pp, pd \rightarrow \mu^+\mu^-$ data. Many models explain $\overline{d} - \overline{u}$, including the meson-cloud model (π) which predicts $\Delta \overline{u} = \Delta \overline{d} = 0$.

Pauli-blocking model: $\int_0^1 [\Delta \bar{u}(x) - \Delta \bar{d}(x)] dx = \frac{5}{3} \cdot \int_0^1 [\bar{d}(x) - \bar{u}(x)] dx \approx 0.2.$

A New Tool: NLO Global Fit to DIS and SIDIS Data

(hep-ph/0504155 and PRD, de Florian, Navarro, Sassot.)

- Fit inclusive and semi-inclusive DIS data at the same time.
- To the next-to-leading order in PDFs and fragmentation functions.
- Different parameterization of FF (KRE and KKP).
- Gives error bands on polarized PDF and translate into error bands on asymmetry observables.
- Translate error bars from any new data set to overall constrains on moments of polarized PDFs.
- Preliminary CLAS EG1b data agrees with the NLO prediction.

Fit to inclusive $g_1^p(x)$, $g_1^n(x)$ and $g_1^d(x)$:

$$g_1^N(x,Q^2) = \frac{1}{2} \sum_{q,\bar{q}} e_q^2 \left[\Delta q(x,Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dz}{z} \left\{ \Delta C_q(z) \Delta q(\frac{x}{z},Q^2) + \Delta C_g(z) \Delta g(\frac{x}{z},Q^2) \right\} \right].$$

Fit to semi-inclusive $A_{1p}^{h}(x)$, $A_{1He}^{h}(x)$ and $A_{1d}^{h}(x)$:

$$\begin{split} \Delta \sigma_N^h(x, z, Q^2) &= A_{1N}^h(x, z, Q) \cdot \sigma_N^h(x, z, Q) \\ &= \frac{1}{2} \sum_{q,\bar{q}} e_q^2 \left[\Delta q \left(x, Q^2 \right) D_q^H \left(z, Q^2 \right) \right. \\ &+ \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{d\hat{x}}{\hat{x}} \int_z^1 \frac{d\hat{z}}{\hat{z}} \left\{ \Delta q \left(\frac{x}{\hat{x}}, Q^2 \right) \Delta C_{qq}^{(1)}(\hat{x}, \hat{z}, Q^2) D_q^H \left(\frac{z}{\hat{z}}, Q^2 \right) \right. \\ &+ \Delta q \left(\frac{x}{\hat{x}}, Q^2 \right) \Delta C_{gq}^{(1)}(\hat{x}, \hat{z}, Q^2) D_g^H \left(\frac{z}{\hat{z}}, Q^2 \right) \\ &+ \Delta g \left(\frac{x}{\hat{x}}, Q^2 \right) \Delta C_{qg}^{(1)}(\hat{x}, \hat{z}, Q^2) D_q^H \left(\frac{z}{\hat{z}}, Q^2 \right) \right] \end{split}$$

The Best Fit Compare with Inclusive Data:

The Best Fit Compare with Semi-Inclusive DIS Data:

Error bands of NLO polarized PDF

Impacts of Semi-SANE Data to NLO Fit

Experiment error bar on $A_{1p}^{\pi^-}$ and $A_{1p}^{K^-}$ for x = 0.2 bin. Kaon production data will put strong constrains on the fragmentation functions (Kretzer vs. KKP)

The Δd Experiment: SIDIS with Polarized 3 He

A new proposal to PAC28. A^{h}_{LL} on polarized ³He in Hall A.

- A^h_{1He} are sensitive to Δd .
- Extract Δd_v (and Δu_v) from $A_{1He}^{\pi^+ \pi^-}$.
- High precision constrains to the global NLO fit.
- First data on $A_{1He}^{K^+}$ and $A_{1He}^{K^-}$
- BigBite at 30° as e-arm. HRS+septum at 6° as h-arm, standard Hall A polarized ³He target.
- All equipments exist in Hall A.
- Request for 28 days of total beam time.

The Δd Experiment: Projected Uncertainties on A_{1n}^h

The high luminosity Hall A polarized ³He target allows significant improvements over HERMES data.

Hall A with a 6 GeV beam.

•
$$\langle Q^2
angle = 2.2\,{
m GeV}^2$$
.

• 28 days of beam time.

Duality in SIDIS: Two-Types of Duality ?

"Fragmentation Duality": at high-z (low-W', keep Q^2 and W high) when the number of final hadron becomes very limited, semi-inclusive meson production looks similar to semi-inclusive DIS reaction. No resonance structure above $W' > m_{\Delta}$.

"DIS Duality": at low Q^2 and W, semi-inclusive meson production looks similar to semi-inclusive deep-inelastic scattering reaction.

Duality in SIDIS: Cross Section vs. W'

Cornell $p(e, e'\pi^+)X$ data 1971.

•
$$E_0 = 11$$
 GeV. $Q^2 = 1.2, 2.0$ GeV 2 .

- Smooth cross sections at W'>1.3 GeV.

Drews et al. PRL 41, 1433 (1978).

•
$$E_0 = 11.5~{
m GeV}.~\langle Q^2
angle = 2.8~{
m GeV}^2$$

• Cross section ratios have no x-dependence for z < 0.6.

- At large *z*, resonance production dominates.
- At z > 0.6 exclusive ρ^0 production start ruining the SIDIS interpretation ?

$$\frac{1}{\sigma_{DIS}(\boldsymbol{x})} \left(\frac{d\sigma}{dz}^{\pi^+}(\boldsymbol{x}, z) + \frac{d\sigma}{dz}^{\pi^-}(\boldsymbol{x}, z) \right) \cong D^+(z) + D^-(z)$$

Recall that in $\pi^+ - \pi^-$ gluons don't contribute. We can construct clean observables in which exclusive ρ^0 contribution vanishes:

$$\frac{1}{\sigma_{DIS}(\boldsymbol{x})} \left(\frac{d\sigma}{dz}^{\pi^+}(\boldsymbol{x}, \boldsymbol{z}) - \frac{d\sigma}{dz}^{\pi^-}(\boldsymbol{x}, \boldsymbol{z}) \right) \cong D^+(\boldsymbol{z}) - D^-(\boldsymbol{z})$$

"Fragmentation duality" will work better for $\pi^+ - \pi^-$ at high-z.

In the case of polarized semi-inclusive meson production, which observable will show duality behavior ?

Let's look at NLO predictions on the z-dependency of SIDIS asymmetries:

G. Navarro and R. Sassot private communications, D. de Florian and R. Sassot, PRD 62, 094025(2000)

Summary

Double-spin asymmetry measurements in SIDIS at Jefferson Lab:

- Spin-flavor decomposition with \vec{p} and \vec{d} (E04-113 in Hall C).
- Constrain Δd through SIDIS with polarized ³He (new proposal in Hall A).

Duality in SIDIS:

- I expect two types of duality: "fragmentation duality" at large-z while keeping the hard scattering part deep-inelastic. "hard-scattering duality" at lower Q^2 and W, merge the resonance production picture with the picture of quark scattering followed by fragmentation.
- Experimentally, I expect duality to appear in two types of observables: $A_{1N}^{\pi^+ \pi^-}$ and A_{1d}^h .

Plan ahead for JLab experiments at 6 and 12 GeV:

- Polarized target SIDIS experiments at high-z.
- Polarized target meson production experiments at lower- Q^2 and W.