Quark-Hadron Duality and the Transition to pQCD Laboratori Nazionali di Frascati, June 6-8, 2005

Quark Models of Duality in e and ν scattering

Wally Melnitchouk Jefferson Lab

+ F. Close (Oxford), E. Paschos (Dortmund)

Bloom-Gilman duality

Average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

... also for spin-dependent...

Neutron (³He) g_1 structure function

Liyanage et al. (JLab Hall A)

Duality in QCD

Operator product expansion

 \implies expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

Duality in QCD

Operator product expansion

 \implies expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific "twist" τ $\tau = \text{dimension} - \text{spin}$

Higher twists

 $\tau = 2$

 $\tau > 2$

single quark scattering

qq and qg correlations

Duality in QCD

Operator product expansion

 \implies expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

If moment \approx independent of Q^2 \implies higher twist terms $A_n^{(\tau>2)}$ small

Duality in QCD

Operator product expansion

 \implies expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

$\textbf{Duality} \Longleftrightarrow \textbf{suppression of higher twists}$

de Rujula, Georgi, Politzer, Ann. Phys. 103 (1975) 315

Moment of neutron g_1 structure function

Meziani, WM, et al., Phys. Lett. B613, 148 (2005)

 $\Gamma_1(Q^2) = \int_0^1 dx \ g_1(x, Q^2)$ $= \Gamma_1^{(\tau=2)}(Q^2) + \Delta\Gamma_1(Q^2)$

Moment of neutron g_1 structure function

 $_{1}^{n}(Q^{2})$

Meziani, WM, et al., Phys. Lett. B613, 148 (2005)

Moment of proton g_1 structure function

Osipenko, WM et al., Phys. Lett. B609, 259 (2005)

 \rightarrow higher twist small down to $Q^2 \sim 2 \text{ GeV}^2$

Total higher twist $\sim zero$ at $Q^2 \sim 1 - 2 \text{ GeV}^2$

nonperturbative interactions between quarks and gluons not dominant at these scales

suggests strong cancellations between resonances, resulting in dominance of leading twist

OPE does not tell us why higher twists are small ! Can we understand this behavior dynamically?

<u>How</u> do cancellations between coherent resonances produce incoherent scaling function?

Dynamical quark models

Coherence vs. incoherence

Exclusive form factors

coherent scattering from quarks

$$d\sigma \sim \left(\sum_i e_i\right)^2$$

Inclusive structure functions

→ *incoherent* scattering from quarks

$$d\sigma \sim \sum_i e_i^2$$

→ How can the <u>square of a sum</u> become the <u>sum of squares</u>?

Pedagogical model

Two quarks bound in a harmonic oscillator potential exactly solvable spectrum

Structure function given by sum of squares of transition form factors

$$F(\nu, \mathbf{q}^2) \sim \sum_n \left| G_{0,n}(\mathbf{q}^2) \right|^2 \delta(E_n - E_0 - \nu)$$

Charge operator $\Sigma_i \ e_i \exp(i\mathbf{q} \cdot \mathbf{r}_i)$ excites even partial waves with strength $\propto (e_1 + e_2)^2$ odd partial waves with strength $\propto (e_1 - e_2)^2$

Pedagogical model

Resulting structure function

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} \left\{ (e_1 + e_2)^2 \ G_{0,2n}^2 + (e_1 - e_2)^2 \ G_{0,2n+1}^2 \right\}$$

If states degenerate, cross terms ($\sim e_1 e_2$) cancel when averaged over nearby even and odd parity states

Minimum condition for duality:

→ at least one complete set of <u>even</u> and <u>odd</u> parity resonances must be summed over

Close, Isgur, Phys. Lett. B509 (2001) 81

Even and odd parity states generalize to 56^+ (L=0) and 70^- (L=1) multiplets of spin-flavor SU(6)

scaling occurs if contributions from 56⁺ and 70⁻ have equal overall strengths

Simplified case: magnetic coupling of γ^* to quark \implies expect dominance over electric at large Q^2

Even and odd parity states generalize to 56^+ (L=0) and 70^- (L=1) multiplets of spin-flavor SU(6)

scaling occurs if contributions from 56⁺ and 70⁻ have equal overall strengths

representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
F_1^p	$9\rho^2$	$8\lambda^2$	$9\rho^2$	0	λ^2	$18\rho^2 + 9\lambda^2$
F_1^n	$(3\rho+\lambda)^2/4$	$8\lambda^2$	$(3\rho-\lambda)^2/4$	$4\lambda^2$	λ^2	$(9\rho^2+27\lambda^2)/2$
g_1^p	$9\rho^2$	$-4\lambda^2$	$9\rho^2$	0	λ^2	$18\rho^2 - 3\lambda^2$
g_1^n	$(3\rho+\lambda)^2/4$	$-4\lambda^2$	$(3\rho-\lambda)^2/4$	$-2\lambda^2$	λ^2	$(9\rho^2-9\lambda^2)/2$

 $\lambda \ (
ho) =$ (anti) symmetric component of ground state wfn. $|N\rangle = \lambda \ |\varphi \otimes \chi\rangle_{sym} + \rho \ |\varphi \otimes \chi\rangle_{antisym}$

Even and odd parity states generalize to 56^+ (L=0) and 70^- (L=1) multiplets of spin-flavor SU(6)

→ scaling occurs if contributions from 56⁺ and 70⁻ have equal overall strengths

Similarly for neutrinos ...

Even and odd parity states generalize to 56^+ (L=0) and 70^- (L=1) multiplets of spin-flavor SU(6)

scaling occurs if contributions from 56⁺ and 70⁻ have equal overall strengths

representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
$F_1^{\nu p}$	0	$24\lambda^2$	0	0	$3\lambda^2$	$27\lambda^2$
$F_1^{\nu n}$	$(9\rho+\lambda)^2/4$	$8\lambda^2$	$(9\rho-\lambda)^2/4$	$4\lambda^2$	λ^2	$(81\rho^2 + 27\lambda^2)/2$
$g_1^{\nu p}$	0	$-12\lambda^2$	0	0	$3\lambda^2$	$-9\lambda^2$
$g_1^{\nu n}$	$(9\rho+\lambda)^2/4$	$-4\lambda^2$	$(9\rho-\lambda)^2/4$	$-2\lambda^2$	λ^2	$(81\rho^2 - 9\lambda^2)/2$

 $\lambda \ (\rho) =$ (anti) symmetric component of ground state wfn.

Close, WM, Phys. Rev. C68 (2003) 035210

SU(6) limit $\implies \lambda = \rho$

SU(6):	$[56, 0^+]^2 8$	$[56, 0^+]^4 10$	$[70, 1^-]^2 8$	$[70, 1^-]^4 8$	$[70, 1^-]^{2} 10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18
g_1^p	9	-4	9	0	1	15
g_1^n	4	-4	1	-2	1	0

Summing over all resonances in 56^+ and 70^- multiplets

$$\implies R^{np} = \frac{F_1^n}{F_1^p} = \frac{2}{3} \qquad A_1^p = \frac{g_1^p}{F_1^p} = \frac{5}{9} \qquad A_1^n = \frac{g_1^n}{F_1^n} = 0$$

→ as in quark-parton model !

SU(6) limit $\implies \lambda = \rho$

SU(6):	$[56, 0^+]^2 8$	$[56, 0^+]^4 10$	$[70, 1^-]^2 8$	$[70, 1^-]^4 8$	$[70, 1^-]^{2} 10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18
g_1^p	9	-4	9	0	1	15
g_1^n	4	-4	1	-2	1	0

 \implies expect duality to appear earlier for F_1^p than F_1^n

 \implies earlier onset for g_1^n than g_1^p

 \longrightarrow cancellations within multiplets for g_1^n

Similarly for neutrinos ... SU(6) limit $(\lambda = \rho)$

SU(6):	$[{f 56},{f 0^+}]^{f 2}{f 8}$	$[{f 56}, 0^+]^{f 4}{f 10}$	$[{f 70}, 1^-]^{f 28}$	$[{f 70}, 1^-]^{f 48}$	$[70, 1^-]^{f 2}10$	total
$F_1^{\nu p}$	0	24	0	0	3	27
$F_1^{\nu n}$	25	8	16	4	1	54
$g_1^{\nu p}$	0	-12	0	0	3	-9
$g_1^{\nu n}$	25	-4	16	-2	1	36

Similarly for neutrinos ... SU(6) limit $(\lambda = \rho)$

SU(6):	$[{f 56},{f 0^+}]^{f 2}{f 8}$	$[{f 56},{f 0^+}]^{f 4}{f 10}$	$[{f 70}, 1^-]^{f 28}$	$[{f 70}, 1^-]^{f 48}$	$[70, 1^-]^{f 2}10$	total
$F_1^{\nu p}$	0	24	0	0	3	27
$F_1^{\nu n}$	25	8	16	4	1	54
$g_1^{\nu p}$	0	-12	0	0	3	-9
$g_1^{\nu n}$	25	-4	16	-2	1	36

Summing over all resonances in 56^+ and 70^- multiplets

$$\implies R^{\nu} = \frac{F_1^{\nu p}}{F_1^{\nu n}} = \frac{1}{2} \left(= \frac{d}{u} \right) \qquad A_1^{\nu p} = -\frac{1}{3} \left(= \frac{\Delta d}{d} \right)$$
$$A_1^{\nu n} = \frac{2}{3} \left(= \frac{\Delta u}{u} \right)$$
$$\implies \text{ as in parton model !}$$

SU(6) may be \approx valid at $x \sim 1/3$

<u>But</u> significant deviations at large x

SU(6) may be \approx valid at $x \sim 1/3$

<u>But</u> significant deviations at large x

Model	SU(6)	No ⁴ 10	No ² 10, ⁴ 10	No <i>S</i> _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
R^{np}	2/3	10/19	1/2	6/19	3/7	1/4
A_1^p	5/9	1	1	1	1	1
A_1^n	0	2/5	1/3	1	1	1
			⁴ 10 [56 ⁺] sup	and ⁴ 8 [7 pressed	70-]	

SU(6) may be \approx valid at $x \sim 1/3$

<u>But</u> significant deviations at large x

Model	SU(6)	No ⁴ 10	No ² 10 , ⁴ 10	No <i>S</i> _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
R^{np}	2/3	10/19	1/2	6/19	3/7	1/4
A_1^p	5/9	1	1	1	1	1
A_1^n	0	2/5	1/3	1		1
				heli supp	city 3/2 pression	

 $N \rightarrow N^*$ transitions for helicity-1/2 dominance

SU(6) representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
$F_{1}^{p} = g_{1}^{p}$	9	2	9	0	1	21
$F_1^n = g_1^n$	4	2	1	1	1	9

polarization asymmetries $A_1^N \rightarrow 1$

- → cf. pQCD "counting rules"
- → hard gluon exchange between quarks

neutron to proton ratio $F_2^n/F_2^p \rightarrow 3/7$

→ cf. "helicity retention" model

Farrar, Jackson, Phys. Rev. Lett. 35 (1975) 1416

SU(6) may be \approx valid at $x \sim 1/3$

<u>But</u> significant deviations at large x

Model	SU(6)	No ⁴ 10	No ² 10, ⁴ 10	No <i>S</i> _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
R^{np}	2/3	10/19	1/2	6/19	3/7	1/4
A_1^p	5/9	1	1	1	1	1
A_1^n	0	2/5	1/3	1	1	1

e.g. through
$$\vec{S}_i \cdot \vec{S}_j$$

interaction
between quarks

SU(6) may be \approx valid at $x \sim 1/3$

<u>But</u> significant deviations at large x

SU(6) may be \approx valid at $x \sim 1/3$

<u>But</u> significant deviations at large x

Fit to $\begin{cases} SU(6) \text{ symmetry at } x \sim 1/3 \\ SU(6) \text{ breaking at } x \sim 1 \end{cases}$

Fit to $\begin{cases} SU(6) \text{ symmetry at } x \sim 1/3 \\ SU(6) \text{ breaking at } x \sim 1 \end{cases}$

$$R^{\nu} \ (= d/u)$$

Polarization asymmetry A_1^p

Polarization asymmetry A_1^n

X

$$\frac{\Delta d}{d} = \frac{4}{15} A_1^n \left(4 + \frac{u}{d} \right) - \frac{1}{15} A_1^p \left(1 + 4\frac{u}{d} \right)$$

$$\frac{\Delta d}{d} = \frac{4}{15} A_1^n \left(4 + \frac{u}{d} \right) - \frac{1}{15} A_1^p \left(1 + 4\frac{u}{d} \right)$$

Zheng et al. [JLab Hall A], Phys. Rev. Lett. (2004) 012004

$$\frac{\Delta d}{d} = \frac{4}{15} A_1^n \left(4 + \frac{u}{d} \right) - \frac{1}{15} A_1^p \left(1 + 4\frac{u}{d} \right) \quad \left(= A_1^{\nu p} \right)$$

Zheng et al. [JLab Hall A], Phys. Rev. Lett. (2004) 012004

Phenomenological models

Phenomenological model

Construct structure function from phenomenological $N \rightarrow N^*$ transition form factors

Resonance widths

$$\delta(W^2 - M_R^2) \longrightarrow \frac{M_R \Gamma_R}{\pi} \frac{1}{(W^2 - M_R^2)^2 + M_R^2 \Gamma_R^2}$$

Neutrino structure functions

Neutrino form factors fitted to neutrino cross section data from BNL, ANL, BEBC, FNAL ... more to come with MINER ν A

Lalakulich, Paschos, Phys. Rev. D71 (2005) 074003

Neutrino structure functions

Neutrino form factors fitted to neutrino cross section data from BNL, ANL, BEBC, FNAL ... more to come with MINER ν A

Lalakulich, Paschos, Phys. Rev. D71 (2005) 074003

important for neutrino oscillation experiments

Neutrino structure functions

Lalakulich, WM, Paschos (in progress)

→ Important to understand systematics of duality in ν scattering cf. *e* scattering

Summary

- Remarkable confirmation of quark-hadron duality in structure functions
 → higher twists "small" down to low Q²(~1 GeV²)
- Quark models provide clues to origin of resonance cancellations \rightarrow local duality
- Practical applications
 - \rightarrow broaden kinematic region for studying
 - (leading and higher twist) quark-gluon structure
 - of nucleon
 - \rightarrow understanding duality in ν scattering important
 - for interpretation of oscillation experiments