Accelerator Physics Issues in **BEPC BEPCII** AP Group Introduction Lattice and dynamic aperture Coupling impedance Single beam effects **Beam-Beam interaction** Summary

BEPCII: a high luminosity double-ring collider

Design Goals and Main Parameters

Beam energy range	1–2 GeV
Optimized beam energy region	1.89GeV
Luminosity @ 1.89 GeV	$1?10^{33} \text{ cm}^{-2} \text{s}^{-1}$
Injection from linac	Full energy injection: <i>E_{inj}</i> =1.55? 1.89GeV
Dedicated SR operation	250 mA @ 2.5 GeV

(2) The lattice and dynamic aperture

- The lattice design should meet the requirement of BEPCII as a dual-purpose machine for both HEP and SR researches, which makes BEPCII a three-ring collider: e-ring, e+-ring and SR-ring;
- It will provide the colliding beams of the center-mass between 2-4.2 GeV optimized at 1.89 GeV with 1?10³³ cm⁻²s⁻¹.
 - Design energy for SR is 2.5 GeV and current of 250 mA, the existing SR beam-lines should keep at their present position;
- RF frequency is chosen as 499.8Mhz(=2856?7/40). The harmonic number of colliding and SR rings are 396 and 402, the circumference are 237.53 m and 241.13 m; The distance between the outer and inner rings is 1.18 m.

IR Layout (Collision Mode)

IR Layout (SR Mode)

Two tune regions are studied: $?_x/?_y = 6.5/7.5$ and $?_x/$ $P_v = 6.5/5.5$. Both meet the following requirements. Solution Natural emittance ~ 140nm \swarrow Momentum compact factor $a_p \sim 0.02$ \swarrow ?_x* = 1m ?_y* = 1.5cm D_x * = 0 $\mathbb{Z}_{x^{*} \text{ inj}} > 20 \text{m}, D_{x_{inj}} = 0$ \swarrow ?_x_kicker > 6 m, ??_x_kickers=0.5 \gtrsim ?_x rfc, ?_y rfc < 15m and D_x rfc=0 \swarrow 2_x arc, 2_y arc < 25m and D_x arc<2.5m $\ll a_x = 0, a_y = 0$ and $D_x = 0$ at IP and symmetric points.

Main P	aramet	ters of	BEPCII vs.	BEPC
Parameters		Unit	BEPCII	BEPC
Operation ener	gy (E)	GeV	1.0?2.0	1.0?2.5
Injection energ	y (E _{inj})	GeV	1.55?1.89	1.3
Circumferenc	e (C)	m	237.5	240.4
? *-function at IP	$(?_x^*/?_y^*)$	cm	100/1.5	120/5
Tunes $(?_x/?_y)$	/ ? s)		6.57/7.61/0.034	5.8/6.7/0.02
Hor. natural emit	tance $(?_{x0})$	mm?mr	0.14 @1.89 GeV	0.39 @1.89 GeV
Damping time $(?_x/?_y/?_e)$			25/25/12.5 @1.89 GeV	28/28/14@1.89 GeV
RF frequency (<i>f_{rf}</i>)		MHz	499.8	199.533
RF voltage per ring (V _{rf})		MV	1.5	0.6?1.6
Bunch number	r (N _b)		93	2?1
Bunch space	ing	m	2.4	240.4
Room current	Colliding	mΔ	910 @1.89 GeV	~2?35 @1.89 GeV
Deam current	SR	ша	250 @ 2.5GeV	130
Bunch length (cm) ? _l	cm	~1.5	~5
Impedance Z/n ₀		??	~10.2	~4
Crossing angle		mrad	?11	0
Vert. beam-beam param. ?,			0.04	0.04
Beam lifetir	ne	hrs.	2.7	6?8
luminosity@1.8	9 GeV	$10^{31} \text{cm}^{-2} \text{s}^{-1}$	100	1

Summary of orbit correction

	Before correction	After correction
X_{ip} (mm)	-1.7 ~+1.3	-0.21 ~ +0.19
Y_ip (mm)	-0.30 ~ +0.26	-0.20 ~ +0.36
X?_ip (mrad)	-0.85 ~ +1.1	-0.09 ~ +0.15
Y?_ip (mrad)	-13.5 ~ +8.0	-1.2 ~ +1.3
X_ max (mm)	6.4	0.56
Y_ max (mm)	7.8	0.83
X_ rms (mm)	2.1	0.18
<i>Y</i> _ rms (mm)	2.9	0.17
NO. of H-COR(aver, max)		21, 27
NO. of V-COR(aver, max)		25, 33
K ₀ of H-COR(aver, max) (mrad)		0.35, 0.58
K ₀ of V-COR(aver, max) (mrad)		0.30, 0.49

The dynamic aperture without/with errors

(3) Coupling Impedance

Broad band impedance? bunch lengthening, TMCI
Narrow band impedance? coupled bunch instability
To minimize the impedance
Special problems due to intensive beam with short bunch length: Trapped modes & HOM heating
Avoid trapped mode

Limit on Longitudinal Broadband Impedance

1) Bunch Lengthening due to PWD

$$\frac{2}{7} \frac{?_{l}}{?_{l0}} \frac{2}{7}^{3} ? \frac{2}{7} \frac{?_{l}}{?_{l0}} \frac{2}{7} ? I_{b} \frac{e?_{p}}{4?E?_{s0}^{2}} \frac{2}{7} \frac{R}{?_{l0}} \frac{2}{7}^{3} \frac{Z}{n} \Big|_{0} ? 0$$

 $I_{b}=9.8 \text{mA}, (?_{1}-?_{0})/?_{0} < 10\%_{2}? Z/n?0.65? (L=83nH)$

2) Microwave instability threshold

if
$$I_{th} > 9.8 \text{mA}$$
, $?_{l0} = 1.3 \text{cm}$
 $\left|\frac{Z}{n}\right|_{eff}$? 0.97?

Threshold on transverse broadband impedance much higher

Limit on narrow band impedance
From Coupled bunch Instabilities

Assuming on resonance and growth rate equal to SR damping

Longitudinal

crit ?
$$(\frac{f}{GHz})(\frac{\text{Re }Z}{k?})e^{?(2?f?_1/c)}$$
 ? 0.49

Transverse

crit ?
$$(\frac{\text{Re}Z}{k? / \text{m}})e^{?(2?f?_1/c)}$$
 ? 21.5

To control the HOM impedance below the threshold, or to import feedback system to cure the instability.

Main Impedance generating components per ring

Components	Number of items
RF cavity	
BPM	68
Bellows	67
flanges	200
Mask	~40
Pumping slots	~2 (DIP+LP)
Taper	8
Injection/kicker	2
IR chamber	
Feedback kicker	2
Y-shape	2
X-cross	
Collimator	3

Simple rules for low impedance in engineering design

Taper, mask: shallow slop <10?, i.e. 1:5. Antechamber: d>h i.e. thickness>1.5cm.

h

۲

Bellows: with RF-finger shielding BPM: PEPII style button (? 1.5cm, w=1mm) Pumping port: longitudinally narrow (w<5mm) slots with RF screen grid Avoid trapped mode: avoid recess structure

BPM

- BEPCII: Adopt the design similar to PEPII's. Optimize the radius of the button and the cut width to avoid the modes trapped: taking button a=7.5mm w=1mm.
- **To avoid TE₁₀ mode propagating to BPM, a photon stopper put near the BPM.**

Simulation results For 68 BPMs, L=6.5nH, $k_{1}=0.15$ V/pC One peak at ~7.2GHz, Z=120? For 68 BPMS, Z=8.2k? <Accepted value 11.3 k?

TE₁₀ mode issues

To avoid TE_{10} mode, which may affect the vertical beam offset signal, BPM installed in the narrowest part, whose cut off freq. is higher than BPM processing freq. of 500MHz.

Injection kicker

- HOMs possibly trapped due to the coaxial structure of the kicker chamber and the vacuum tank.

Y-Shape

- Two Y-shapes recombine e⁺ and e⁻ rings
- Smooth tapering structure is being studied.
- A simple mode
 ? 107mm=> ? 78mm
 With 1:10 taper (L=0.27m)
 was used to estimate impedance.

Simulation results

 k_{I} =0.095V/pC, L~ 1.1nH. P_{HOM} ~ 1.4kW for 2 beams. No trapped modes (longitudinally) Cooling channel should be installed around the Y-chrotch

Comparison of P_{HOM} between BEPCH, KEKB and PEPH

P_{HOM} ? $k_l (eN_b)^2 n_b f_{rev}$? $k_l I_b^2 n_b / f_{rev}$? $I_b^2 n_b C$

	BEPCII	PEPII (LER)	KEKB (LER)
Ring current (mA)	910	2140 (1800)	2600 (1454)
Bunch current (mA)	9.8	1.29 (2.27)	0.52 (1.23)
Bunch length (cm)	1.5	1.0	0.4
Bunch number	93	1658 (792)	5000 (1184)
Circumference (m)	237.5	2200	3016
$I^2 n_b C$ (10 ⁶)	2.12	6.1 (9.0)	4.1 (5.4)

BEPCII: Bunch length longer, k_I smaller, P_{HOM} smaller The parasitic loss in BEPCII smaller compared with KEKB and PEPII? feasible referring their experiences. Further study on HOM heating is under way.

Resistive Wall

Aluminum: antechamber, octagon=54mm, b=26mm. 70% in total length, racetrack shape, a=60mm, b=27mm, 30% in total length
1) Longitudinal impedance: Small

2) Transverse resistive wall impedance

 $Z_{?x} ? 0.7? 10^8 (1?i) / \sqrt{?} Z_{?y} ? 1.4? 10^8 (1?i) / \sqrt{?}$

Transverse impedance gives the dominant contribution to the total impedance at low frequency. Stability of beam will be studied later.

Impedance Budget of BEPCII Storage Ring

Component	Number of items	Inductance L (nH)	Loss factor k _l (V/pC)	HOM power (kW) (<i>I</i> _b = 9.8mA, <i>N</i> _b = 93)
SRF	1		~0.69	4.74
Resist. wall			0.11	0.78
BPM	68	3.3	0.08	0.57
Bellows	67	0.48	0.02	0.14
RF seals	200	3.0	0.003	0.02
Mask	40	2.8	0.06	0.42
Pumping ports		0.5		
Taper	8	4.4	0.05	0.35
Injection kicker	2	0.8	0.04	0.28
Y-shape	2	2.2	0.19	1.34
X-cross	1	0.8	0.03	0.21
IR	1	0.8	0.01	0.07
Collimator	3	3.81	0.06	0.42
Feedback kicker	2	6.0	0.44	2.82
Total		28.9	1.76	12.5

Summary of impedance study

Total impedance: L~29nH, i.e. Z/n~0.23? . P_{HOM}~12.5 kW;

It's possible to control the impedance under the threshold of bunch lengthening and microwave instability, provided the beam duct built smoothly. (Experiences from DA? NE, CESR, KEKB, PEPI I etc.);

R&D should be carried out for key components such as kickers, IR chamber. Work together with design engineering team to minimize the impedance;

Bench measurement of impedance will be carried out.

(4) Collective Effects in BEPCII

Single Bunch Instability

Coupled bunch Instability

Ion effects in the Electron Ring

Electron Cloud Instability in Positron Ring

Beam lifetime and average luminosity

4.1 Single Bunch Collective Effects

From the broadband impedance model (e.g. Hefeitsbane model), the effective longitudinal impedance:

 $|Z_{//}/n|_{eff} \sim 0.24? \implies I_{th} \sim 36$ mA Bunch lengthening $\sim 5\%$

Bunch lengthening calculated with $|Z/n|_{eff}$ A scheme with negative momentum compaction factor to reduce bunch length is being studied.

4.2 Coupled Bunch Instability

4.2.1 Coupled Bunch Instability Due to HOM of SCC $M = 99, I_b = 9.8$ mA, the most unstable mode

		Growth time (ms)		Growth time (ms)
Longitudinal	<i>a</i> = 1	$?_1 = 12.8$ $?_2 = 13.7$ $?_3 = 13.9$	<i>a</i> = 2	$?_1 = 304$ $?_2 = 323$ $?_3 = 338$
Transverse	<i>a</i> = 0	$?_1 = 26.6$ $?_2 = 29.0$ $?_3 = 30.0$	<i>a</i> = 1	$?_1 = 1076$ $?_2 = 1165$ $?_3 = 1229$

For 93 bunches, similar results obtained with multi-bunch simulation.

Growth time vs. transverse fune

Growth time vs. unstable mode

Sector $?_x/?_y = 6.53/7.58$, ?=4.3ms At $?_y=7.9$, the most unstable mode has growth time of 1.5ms, which require the feedback system of damping time of 1ms.

4.2.3 Ion Effects

Ion trapping

$$\cos(?_{i}l_{train} / c) ? \frac{1}{2}?_{i}T_{g} \sin(?_{i}l_{train} / c) ? 1$$

Possible method to eliminate ion trapping & Partially filling the beam in the RF buckets. & Install cleaning electrode.

With ~6 bunches absent, the ions is not trapped. Detailed simulation is being done.

Fast Beam-Ion Instability (FBII)

Ions created during a single revolution of the beam could potential causes instability:

$$\frac{1}{?_e}?\frac{1}{?_c}\frac{c}{2\sqrt{2}l_{train}}(??_i)_{rms}$$

Growth rate: Coherent ion freq. $?_i = 2.8? 10^7 \text{ s}^{-1}$, $??_i = 1.38? 10^7 \text{ s}^{-1}$

 $?_e=3ms => FBII$ should be damped with feedback system. shorter bunch trains may be helpful.

4.2.4 Electron Cloud Instability Rough estimation of ECI

1) Coupled Bunch Instability With the saturated EC density:

2) Single Bunch Instability

 $? = N_b r_e | W_y | \beta_y / 16? Q_s, ? > 1$ unstable.

ECI Parameters of a few Storage rings

	BEPCII	КЕКВ	PEPH
Beam energy(GeV)	1.89	3.5	3.1
Bunch population $N_b(10^{10})$	4.84	3.3	9
Bunch spacing L _{sep} (m)		2.4	2.5
Rms bunch length ? _z (m)	0.015	0.004	0.013
Rms bunch sizes ? _{x,y} (mm)	1.18,0.15	0.42,0.06	1.4,0.2
Chamber half dimensions h _{x,y} (mm)	60,27	47	45, 25
Slippage factor ? (10 ⁻³)	22	0.18	1.3
Synchrotron tune Q _s	0.033	0.015	0.03
Circumference C(km)	0.24	3.0	2.2
Average beta function(m)	10	15	
? _{CB} (ms)	0.03	0.06	0.01
TMCI threshold ? _e [10 ¹² m ⁻³]	22.7	0.5	1

?_{e,CB}: the same level as B-factories.
 Similar specification on feedback to cure the CB.
 EC density threshold higher than B-factories
 TMCI in BEPCII due to EC may not be stronger.

To control ECI

To guarantee the beam performance against ECI, precaution methods successfully adopted in PEPII and KEKB is considered in BEPCII design.

Antechamber

TiN coating of the inner surface
 Solenoid winding (as backup)

Clearing electrode (R&D)

Simulation study being done

Consideration on the antechamber geometry

 h=15mm, 99.5% out
 L>5* h, <10% PE drift into beam duct

3) Photon absorber in the antechamber:
>5*h from beam duct
Photon reflection rate reduced: <1/10
PEY reduced ~1/5

A code has been developed (Y. Liu) to study the effect of antechamber against ECI, based on Ohmi's model

Comparison of EC w/o antechamber and TiN

With TiN

Without TiN

With antechamber, EC density about 5 times lower;
With TiN, EC density 5 times lower.

EC density at the beam pipe center significantly reduced in B,Q,S magnet field; Advantages in BEPCII: more than ¹/₂ space in arc occupied by magnets.

Summary of the simulations on ECI

method	PEY	SEY	EC ? (m ⁻³)	? (ms)	?
No ante.	0.1	1.8	6.2?10 ¹³	0.003	2.89
With ante.	0.001	1.8	3.1?1012	0.040	0.17
TiN only	0.1	1.066	1.7?10 ¹³	0.020	0.81
ante+TiN	0.001	1.066	3.5?1011	0.530	0.015
Ante+TiN+ Clear.	0.001	1.066	1.2?1011	1.400	0.0058

With antechamber+TiN: Coupled bunch inst. damped by feedback, no TMCI instability occurs

Summary of growth time of coupled bunch instabilities

	HOM	Resistive	FBI	ECI
Tran. (ms)	26.6	4.3	3	0.5
Long. (ms)	12.8			

Transverse instability much faster than SR Damping: feedback system required

 Longitudinal instability same level as SR Damping: feedback system as a backup
 For SR mode, bunch current and total beam current lower, instabilities weaker than colliding mode.

2.3.5 Beam Lifetime

Beam loss mechanism: 1) beam-beam bremsstrahlung,
2) beam-gas scattering,
3) Touschek effect.

	Beam-gas	Touschek	Beam-beam	Total
Lifetime	26 hrs	7.1 hrs	5.1 hrs	3.0hrs

P= 8?10⁻⁹ torr with 80% H₂ and 20% CO, V_{rf}=1.5MV, Energy acceptance =0.7%

Average luminosity

The luminosity lifetime is half of the beam lifetime. $P_L = 1.5$ hours.

The average luminosity is

$$\langle L \rangle ? \frac{ ?_{o}^{t_{c}} L(t) dt}{t_{c} ? t_{f}} ? L_{0}?_{L} \frac{1? e^{?t_{c}/?_{L}}}{t_{c} ? t_{f}}$$

 t_f — refilling time (injection time+mode switch) t_c — collision time, or time for physics L_0 — peak luminosity

Top-off injection

 t_f ? 0.2 hours, $t_c = 1.0$ hours $\langle L \rangle_{max} = 6.0 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Operation chart

Summary of single beam effects

- With the present impedance budget, $?_1 < 1.5$ cm.
- Coupled bunch instabilities due to HOMs and resistive wall can be damped with the feedback system.
- Gap is needed to avoid ion trapping, FBII in e-ring should be damped with feedback system.
- For ECI in e+ ring, antechamber (TiN coated) is adopted to reduce EC. R&D on other methods (solenoid, clearing electrode) is under way.
- Normal beam lifetime is about 3.1 hours. With top-off injection the average luminosity > 6.0×10³²cm⁻²s⁻¹.

(5) **Beam-Beam Interaction**

- Using code BBC (Beam-Beam interaction with a Crossing angle) developed by K.Hirata.
- BBC is a weak strong simulation code in 6-dimensional phase space including the effect of crossing angle.
- The effect of a finite bunch length was taken into account by dividing a strong bunch into 5 slices longitudinally.
 - The weak bunch is represented by 50 randomly generated macro particles, with Gaussian distribution in 6-dimensional phase space.
- The simulation was done for more than 5 radiation times.

Beam-beam tune scan

Luminosity survey with a crossing angle of $?_c=11$ mrad=2

Luminosity survey with a crossing angle of $?_c=11$ mrad =2

The high luminosity region is around $?_x = 0.53$, $?_y = 0.58$. These tune values are chosen as designed working points. The crossing angle of 11 mrad induces some reduction of the luminosity, as well as the region of the high luminosity.

?_y=0.58

Workshop on e+e- in 1-2 GeV Range

?_x=0.53

Crossing angle effect

Workshop on e+e- in 1-2 GeV Range

Finite bunch length effects (L vs. β_y^*/s_z)

Summary of beam-beam effects

- To choose the horizontal tune close (above) to half integer is a good choice to get the higher luminosity;
- The luminosity reduction factor due to hour glass effects and crossing angle is about 80%;
- The designed value of ?y=0.04 is reasonable and reachable for $?_c=11$ mrad=2;
- Some further simulation should be done, including the coherent beam beam effects by strong-strong simulations.

(5) Summary

Lattice and dynamics: optimized; Coupling impedance: investigated; Single beam effects: studied; **Beam-Beam interaction: simulated;** Design goal: feasible; Further study: needed!

Thank You for Attention