

C. Zhang for BEPC Team

September 10, 2003, Workshop on e⁺e⁻ in 1-2 GeV Range, Alghero, Italy

From BEPC to BEPCII
Basic Design
Key Technologies
Budget and schedule
Summary

(1) From BEPC to BEPCII

• Status of the BEPC

Why BEPCII

What is BEPCII

2

Main Parameters

Beam Energy (E) **Revolution frequency** (f_r) **Lattice Type** β_x^* -function at IP (β_x^* / β_y^*) **Transverse Tune** (v_x/v_y) Natural Energy Spread (σ_e) Momentum Com. Factor (α_p) Hor. Natural Emittance (ε_{x0}) **RF Frequency** (f_{rf}) Harmonic Number (h) **RF** Voltage (V_{rf}) **Bunch Number** (N_b) **Maximum Beam Current** Luminosity

1.0 ~ 2.5 GeV 1.247 MHz **FODO** + Low- β Insertions 1.3/0.05 m 5.8/6.8 (Col. Mode) 8.72/4.75 (SR Mode) 2.64E ×10-4 0.042 (Col. Mode) 0.016 (SR Mode) 0.4@1.55 GeV, 0.076@2.2GeV(SR) mm·mr 199.533 MHz 160 0.6~1.6 MV 1*1 (Col.), 60~80 (SR) 50mA@1.55 GeV (Col.,) 130mA (SR) 5×10³⁰ cm⁻² s⁻¹ @1.55 GeV, 1×10³¹ cm⁻² s⁻¹ @1.89GeV

2.1 Why BEPCII

• BEPC/BESI collected 9 ×10⁶ J/ ψ events in about two years;

- Upgraded BEPC/BESII obtained 5×10^7 J/ ψ events in two years;
- **BEPC/BESI collected 4** $\times 10^6$ ψ' events;
- BEPC /BESII operated for ψ' from Nov. 23, 2001 to March 13, 2002;
 - With 1×10^6 a week, $1.4 \times 10^7 \psi'$ was collected in 100 days;
- Nice physics results are expected;
- For our physics goal, 6 ×10⁹ J/ψ 2×10⁹
 ψ per year are expected → → →
 BEPCII/BESIII!

Proton-antiproton bond state? Multiple quark state?

Scientific Goal of the BEPCII Remains a dual-purpose facility

• Charm and τ physics

•

- Light hadron spectroscopy, charmed mesons and τ at the thresholds;
- Hadron production mechanism, low energy QCD;
- Precision R values, ambiguous' structures in 3.8-4.2 GeV.
- Searches for glueball, hybrids and exotic states;
- New physics: probing rare decay, CP violation from the decays of J/ψ and ψ(2S);
- Synchrotron radiation research

Serve as a platform of multi-discipline researches with improved performance.

1.3 What is BEPCII

DR: multy-bunch $k_{bmax} \sim 400$, $k_b = 1 \rightarrow 93$

Choose large ε_x & optimum param.: I_b =9.75mA, ξ_y =0.04

 $L(cm^{-2}s^{-1}) = 2.17 \times 10^{34}(1+R)\xi_y \frac{E(GeV)k_b I_b(A)}{\beta_v^*(cm)}$

Micro- $\beta:\beta_y^* = 5$ cm $\rightarrow 1.5$ cm SC insertion quads

Reduce impedance +SC RF $\sigma_z = 5 \text{ cm} \rightarrow <1.5 \text{ cm}$

 $(L_{BEPCII}/L_{BEPC})_{D,R} = (5.5/1.5) \times 93 \times 9.8/35 = 96$ $L_{BEPC} = 1.0 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1} \rightarrow L_{BEPCII} = 1 \times 10^{-33} \text{ cm}^{-2} \text{s}^{-1}$

BEPCII: a high luminosity double-ring collider

(2) The Basic Design

Detailed in the Working Group talk: Accelerator Physics Issues of BEPCII

Design Goals and Main Parameters
 The Lattice and Dynamic Aperture
 Single Beam Effects
 Beam-Beam Effects
 Beam Lifetime & Average Luminosity

2.1 Design Goals and Main Parameters

Main Parameters

Parameters	Unit	BEPCII	BEPC
Operation energy (E)	GeV	1.0-2.0	1.0-2.5
Injection energy (<i>E</i> _{inj})	GeV	1.55-1.89	1.3
Circumference (<i>C</i>)	m	237.5	240.4
β^* -function at IP (β_x^* / β_y^*)	cm	100/1.5	120/5
Tunes $(v_x/v_y/v_s)$		6.57/7.61/0.034	5.8/6.7/0.02
Hor. natural emittance (\mathcal{E}_{x0})	mm∙mr	0.14 @1.89 GeV	0.39 @1.89 GeV
Damping time $(\tau_x/\tau_y/\tau_e)$		25/25/12.5 @1.89 GeV	28/28/14@1.89 GeV
RF frequency (<i>f_{rf}</i>)	MHz	499.8	199.533
RF voltage per ring (V _{rf})	MV	1.5	0.6-1.6
Bunch number (N _b)		93	2×1
Bunch spacing = =	m	2.4	240.4
Beam current Colliding	mA	910 @1.89 GeV	~2×35 @1.89 GeV
SR SR		250 @ 2.5GeV	130
Bunch length (cm) σ_l	cm	~1.5	~5
Impedance $ Z/n _0$	Ω	~ 0.2	~4
Crossing angle	mrad	±11	0
Vert. beam-beam param. ξ_y		0.04	0.04
Beam lifetime	hrs.	2.7	6-8
luminosity@1.89 GeV	$10^{31} \text{cm}^{-2} \text{s}^{-1}$	100	1

2.3 Single beam collective effects
Bunch length and impedance V_{rf} = 1.5MV, Z/n/eff-0.2Ω, I_{th} = 37mA → I_b = 9.8mA, σ₁~1.3 cm
Beam-cavity interaction (with KEKB SC cavities)

	a	τ (ms)	a	τ (ms)
Longitudinal	0	12.8	- 1	304
Transverse	1	26.6	2	1076

Resistive wall

 ν_x/ν_y = 6.6/7.6, N_b = 99, I_b = 9.8mA, τ = 4.3ms;

 Ion effects: N_b = 93, τ_{FH}=3ms;
 Electron cloud instability:

 Antechamber with TiN coating for e⁺ ring

 Bunch feedback: τ_L=5 ms, τ_T = 1 ms → → Single beam instabilities can be damped !

2.5 Beam Lifetime and Average Luminosity

Effect	Condition	Lifetime (hrs.)	
Beam-gas interaction	<i>P</i> = 5×10 ⁻⁹ Torr; 80% H ₂ , 20% CO	26	
Quantum effect	$A_{\rm x} \sim 10 \sigma_{\rm x}$	>10 ⁵	
Beam-beam bremsstrahlung	$\xi_{\rm x,y}=0.04, {\beta_{\rm y}}^*=1.5~{\rm cm}$	5.1	
Touschek effects	$I_{\rm b} = 16 \text{ mA}, V_{\rm rf} = 3 \text{ MV}$	7.1	
Overall lifetime	$\tau^{-1} = \Sigma \tau_i^{-1}$	3.0	

$$\left\langle L\right\rangle = \frac{\int_0^{t_c} L(t)dt}{t_c + t_f} = L_0 \tau_L \frac{1 - e^{-t_c/\tau_L}}{t_c + t_f}$$

Taking $\tau = 1.5$ hrs., $t_f = 0.4$ hr. and $L_0 = 1 \times 10^{33}$ cm $^{-2}s^{-1}$, the optimized collision time is calculated as 1.0 hrs. and the maximum average luminosity is calculated as $\langle L \rangle_{max} \sim 0.5 \times 10^{33}$ cm⁻²s⁻¹. The top-off injection will further improve the average luminosity to $\langle L \rangle_{max} > 0.6 \times 10^{33}$.

(3) Key Technologies **Injector Upgrades RF** System **Injection system Magnet System Power Supply System** Vacuum System **Beam diagnosis Control Upgrade** Cryogenics **Interaction Region**

3.1 Injector upgrading

Basic requirement:

- Contractor
- □ Higher intensity: positron injection rate ≥ 50 mA/min.;
 □ Full energy injection with E=1.55 ~ 1.89 GeV;
- To enhance the current and energy of the electron beam bombarding the target and to reduce the beam spot;
- To design and produce a new positron source and to improve its focusing;
- To increase the repetition rate from present 12.5 Hz to 50 Hz.
- To consider multi-bunch injection $(f_{RF}/f_{Linac}=7/40)$;

SC Micro-B Magnets

Coil Layout of SC IR Magnet

TV-			

and the second		E.			
-	95.1~105.9	1474~1590	116	-	1120*
8.744	95.1~108.1	961~1457	496	400	460
0.543 0.056	108.5~111.8	633~1307	674	400	495 (50)
0.059	111.9~113.5	904~1514	610	380	24
0.937	113.6~115.2	954~1464	510	400	45

re in series with AS1 but can have their own independent trim currents.

- 27 -

August 31, 2003

Collaboration on BEPCII

- Linac: SLAC, KEK, INFN ...
- Multiple bunches with Pretzel: Cornell ...
- SC Micro-β quadruples: BNL, KEK ...
- Interaction Ragion: KEK, SLAC, INFN...
- Superconducting RF cavities: KEK, Cornell, PU...
- Impedance study: LBNL, Tsinghua U., ...
- Beam Instrumentation: CERN, SLAC, KEK...
- PC farm and Data management system: FNAL ...
- BES III shower counters: Cornell ...
- BES MDC IV: Cornell, USTC ...
- BES III VC: FNAL D0 ...
- BES III electronics: Tsinghua U.,...

(4) Budget and Schedule

(5) Summary

- The BEPC has been well operated with many exciting HEP and SR results for 14 years since it was put into operation in 1989.
- The BEPCII is designed as micro-β plus multibunches with two rings and its design luminosity is two order of magnitude higher than the present BEPC in energy range of charm and τ.
- Some key technologies is being developed in order to achieve the scientific goal of the BEPCII.
- The international collaboration and contribution will be promoted in order to accomplish this challenging and exciting project on schedule and budget.

