

http://www.lnf.infn.it/conference/d2/

September 11th, 2003

M. Sozzi – Charged K experiments

Outline

M. Sozzi – Charged K experiments

 $e^+e^- \ Alghero \ Workshop$

Antefact: Physics with K^{\pm} ?

- Kaons: the "minimal" flavour laboratory
- Long lifetime, "few" decay modes
- Only direct CP violation effects
 possible
- Difficulties in linking measurements to theory? Not always !
- Form factors, universality
- Several BR poorly known (K-)
- Good (or even *best*) information on CKM matrix elements
- High sensitivity to BSM physics

M. Sozzi – Charged K experiments

K⁺ DECAY MODES

Scale factor/

K⁻ modes are charge conjugates of the modes below.

	Mode		ale factor/ dence level					
	Leptonic and semileptonic modes							
Г1	$e^+\nu_e$	$(1.55 \pm 0.07) \times 10^{-5}$						
Γ2	$\mu^+ \nu_{\mu}$	(63.43 ±0.17)%	S=1.2					
Гз	$\pi^0 e^+ \nu_e$	(4.87 ±0.06)%	S=1.2					
	Called K ⁺ _{e3} .							
Γ4	$\pi^{0} \mu^{+} \nu_{\mu}$	(3.27 ±0.06)%	S=1.2					
	Called $K^+_{\mu 3}$.							
Γ ₅	$\pi^{0}\pi^{0}e^{+}\nu_{e}$	$(2.1 \pm 0.4) \times 10^{-5}$						
Γ ₆	$\pi^+\pi^-e^+\nu_e$	$(4.08 \pm 0.09) \times 10^{-5}$						
Γ7	$\pi^+\pi^-\mu^+\nu_\mu$	$(1.4 \pm 0.9) \times 10^{-5}$						
Г8	$\pi^{0}\pi^{0}\pi^{0}e^{+}\nu_{e}$	$< 3.5 \times 10^{-6}$	CL=90%					
Hadronic modes								
Гο	$\pi^{+}\pi^{0}$	$(21.13 \pm 0.14) \%$	S=1.1					
	$\pi^{+}\pi^{0}\pi^{0}$	(1.73 ±0.04)%	S=1.2					
Γ11	$\pi^{+}\pi^{+}\pi^{-}$	(5.576±0.031) %	S=1.1					
	Lepto	nic and semileptonic modes with photons						
Γ ₁₂	$\mu^+ \nu_\mu \gamma$	[a,b] (5.50 ±0.28)×10 ⁻³						
Γ ₁₃	$\pi^0 e^+ \nu_e \gamma$	[a,b] (2.65 ±0.20)×10 ⁻⁴						
Γ14	$\pi^0 \dot{e}^+ \nu_e \gamma (SD)$		CL=90%					
Γ15	$\pi^0 \mu^+ \nu_\mu \gamma$	$[a,b] < 6.1 \times 10^{-5}$	CL=90%					
Γ_{16}	$\pi^0 \pi^0 e^+ \nu_e \gamma$	$< 5 \times 10^{-6}$	CL=90%					
		Hadronic modes with photons						
Γ17	$\pi^+\pi^0\gamma$	[a,b] (2.75 ±0.15)×10 ⁻⁴						
	$\pi^+\pi^0\gamma(DE)$	[b,d] (4.7 ±0.9)×10 ⁻⁶						
Γ19	$\pi^{+}\pi^{0}\pi^{0}\gamma$	$[a,b]$ (7.4 $^{+5.5}_{-2.9}$)×10 ⁻⁶						
Γ ₂₀	$\pi^+\pi^+\pi^-\gamma$	[a,b] (1.04 ±0.31)×10 ⁻⁴						
Γ21	$\pi^+\gamma\gamma$	[b] (1.10 ± 0.32) $\times 10^{-6}$						
Γ ₂₂	π + 3γ	$[b] < 1.0 10^{-4}$	CL=90%					
Leptonic modes with $\ell \overline{\ell}$ pairs								
F23	$e^+ \nu_e \nu \overline{\nu}$	< 6 × 10 ⁻⁵	CL=90%					
Γ24	$\mu^+ \nu_\mu \nu \overline{\nu}$	$< 6.0 \times 10^{-6}$	CL=90%					
Γ ₂₅	e+ v_e+ e-	$(2.48 \pm 0.20) \times 10^{-8}$						
Γ26	$\mu^{+}\nu_{\mu} e^{+} e^{-}$	$(7.06 \pm 0.31) \times 10^{-8}$						
Γ27	$e^{+}\nu_{e}\mu^{+}\mu^{-}$	$< 5 \times 10^{-7}$	CL=90%					
Γ ₂₈	$\mu^+\nu_\mu\mu^+\mu^-$	$< 4.1 \times 10^{-7}$	CL=90%					

The Stage

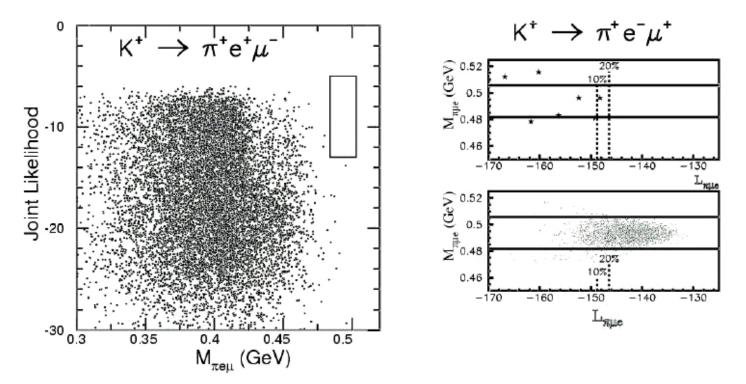
	BR	Physics interest
$K_{l2}(\mu^{\pm}\nu)$	$(63.43 \pm 0.17)\%$	$f_{K_{,}}$ universality ($e^{\pm}v$)
$ \begin{bmatrix} {\rm K}_{\pi 2} (\pi^{\pm} \pi^{0}) \\ {\rm K}_{\pi 3} (\pi^{\pm} \pi^{+} \pi^{-}) \\ {\rm K}_{\pi 3} (\pi^{\pm} \pi^{0} \pi^{0}) \end{bmatrix} $	$\begin{array}{c} (21.13 \pm 0.14) \ \% \\ (5.58 \pm 0.03) \ \% \\ (1.73 \pm 0.04) \ \% \end{array}$	ChPT, CP violation
$ \begin{bmatrix} K_{13} (\pi^0 e^{\pm} \nu) \\ K_{13} (\pi^0 \mu^{\pm} \nu) \end{bmatrix} $	$\begin{array}{c} (4.87\pm0.06)\%\\ (3.27\pm0.06)\%\end{array}$	V _{us} , form factors, ChPT, T violation BSM, universality
$K_{14}(\pi^+\pi^-e^\pm\nu)$	$(4.08 \pm 0.09) \times 10^{-5}$	ChPT, $\pi\pi$ interaction
$egin{array}{l} \pi^{\pm}\mathrm{e}^{+}\mathrm{e}^{-} \ \pi^{\pm}\mu^{+}\mu^{-} \end{array}$	$(2.88 \pm 0.13) \times 10^{-7}$ $(7.6 \pm 2.1) \times 10^{-8}$	FCNC, ChPT, CP violation
$ \begin{bmatrix} \mathrm{K}_{12\gamma}(\mu^{\pm}\nu\gamma) \\ \mathrm{K}_{13\gamma}(\pi^{0}e^{\pm}\nu\gamma) \end{bmatrix} $	$(5.50 \pm 0.28) \times 10^{-3}$ $(2.65 \pm 0.20) \times 10^{-4}$	T violation BSM
$\mathrm{K}_{\pi2\gamma}(\pi^{\pm}\pi^{0}\gamma)$	$(2.75 \pm 0.15) \times 10^{-4}$	ChPT, CP violation

September 11th, 2003

M. Sozzi – Charged K experiments

LFV violation? Already done

Several dedicated efforts


BNL AGS experiments (E865) set very high standards

Flux and backgrounds limiting further progress

Mode	90% BR limit
$K^+ \rightarrow \pi^+ \mu^+ e^-$	2.8×10^{-11}
$K^+ \rightarrow \pi^+ \mu^- e^+$	5.2×10^{-10}
$K^+ \rightarrow \pi^- e^+ e^+$	6.4×10^{-10}
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	3.0×10^{-9}
$K^+ \rightarrow \pi^- \mu^+ e^+$	5.0×10^{-10}

M. Sozzi – Charged K experiments

LFV with K⁺

I mpressive progress. No new LFV projects with K. Better background suppression would be required

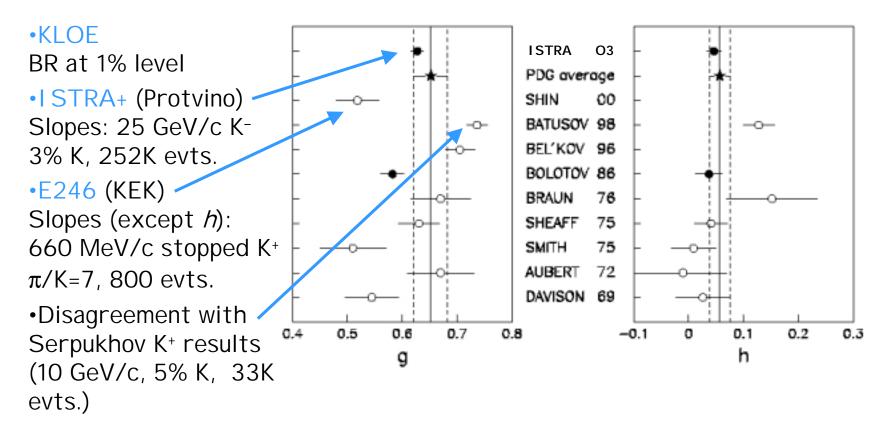
M. Sozzi – Charged K experiments

Hadronic decays: 2π , 3π

 $K \rightarrow 2\pi, 3\pi$ recomputation at NLO (p⁴) in ChPT (Bijnens et al.), with partial inclusion of isospin-breaking effects: rather good agreement of Dalitz plot slopes with expt.

Mode		Expt.	Scale	ChPT fit
$\pi^+\pi^+\pi^-$	g h k	$\begin{array}{c} -0.2154 {\pm} \ 0.035 \\ 0.012 {\pm} \ 0.008 \\ -0.0101 {\pm} \ 0.0034 \end{array}$	1.4 1.4 2.1	- 0.216 0.012 - 0.0052
$\pi^{\pm}\pi^{0}\pi^{0}$	g h k	$\begin{array}{c} 0.652 \pm 0.031 \\ 0.057 \pm 0.018 \\ 0.0197 \pm 0.0054(*) \end{array}$	2.7 1.4	0.638 0.074 0.0045

[Side note: fitted value of δ_2 - δ_0 = (- 58.2 ± 4)°]


(*) actually improved

September 11th, 2003

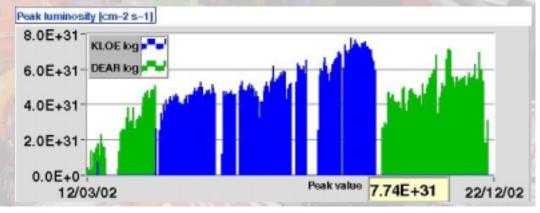
M. Sozzi – Charged K experiments

Hadronic decays: experiment

Improved $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ measurements:

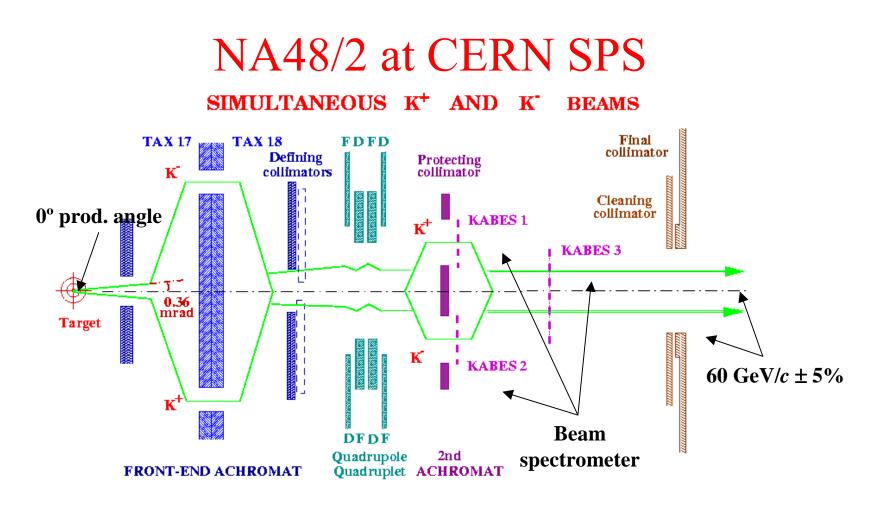
September 11th, 2003

M. Sozzi – Charged K experiments


KLOE at DAΦNE

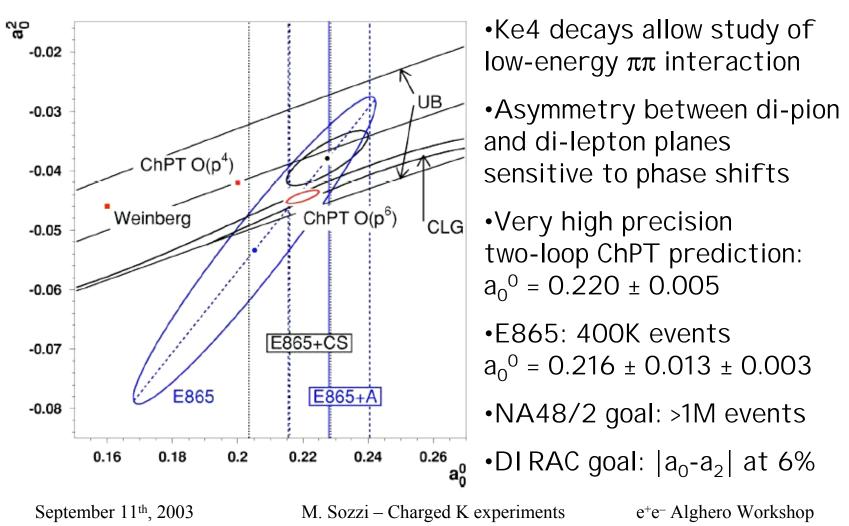
No need to give details on KLOE here...

 $BR(K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}) = (1.781 \pm 0.013 \pm 0.016) \%$ (440 pb⁻¹,<1% bkg)


Good prospects for rare K[±] decays A strong point: constrained kinematics High-purity pion ($\pi^{\pm}\pi^{0}$) and muon ($\mu^{\pm}\nu$) tagging

Peak luminosity: 8×10³¹ cm⁻² s⁻¹ in 2002 Goal: 5×10³² cm⁻² s⁻¹ 500 pb⁻¹ (1.5 ×10⁹ φ) collected so far

September 11th, 2003


M. Sozzi - Charged K experiments

New *simultaneous* K+ and K- narrow band beam Kaon momentum spectrometer

M. Sozzi – Charged K experiments e⁺e⁻ Alghero Workshop

Low-energy $\pi\pi$ physics

CP violation: from ϵ' onwards

The 30-year long quest for direct CP violation resulted in the first *qualitative* test of the CKM picture of CP violation:

 $\varepsilon'/\epsilon \neq 0$

•Superweak model ruled out

- CPV not a peculiarity of neutral kaons Still however:
- ε'/ε under poor theoretical control (could even be dominated by new physics)
- No effect seen in charged particle decays yet (pure direct CP)

→ Other CPV measurements needed for quantitative checks and searches for other CPV sources (new physics)

M. Sozzi – Charged K experiments

CPV: K^{\pm} vs. K^{0}

- K⁰ can exhibit CPV by existence of a decay mode $(\pi\pi, \pi^0\nu\nu)$, K_L-K_S interference effects, decay distribution asymmetries $(\pi^+\pi^-e^+e^-)$.
- Particle antiparticle mixing enriches but complicates phenomenology (ΔS =2)
- K[±] in principle simpler (no mixing, only direct CPV)
- K[±] can exhibit CPV by their comparison (widths, decay distributions): measure both in same detector
- In principle best with initial CP-symmetric state (pp, e+e-)
- No stopped experiments

CP violation in K[±] decays

• $\pi^{\pm}\pi^{+}\pi^{-}$ and $\pi^{\pm}\pi^{0}\pi^{0}$: direct CPV with no $\Delta I = 3/2$ suppression as for ϵ'/ϵ , *but* small effects in SM (small FSI phases, higher order ChPT) Asymmetry in linear slopes O(10⁻⁵), can be >10⁻⁴ in some regions of SUSY-space. Width asymmetries suppressed.

• $\pi^{\pm |\cdot|}$: Width asymmetry O(10⁻⁵) in SM, can be larger in SUSY. Useful handle from m_{//} dependence.

• $\pi^{\pm}\pi^{0}\gamma$: I B suppressed by $\Delta I = 1/2$, DE seen (DE/I B ~ 0.1, M1 type). New KEK-E470 2003: 4K events (1.2% bkg.) Interference (E1 DE) not seen. Width asymmetries O(10⁻⁵) in SM. γ spectrum asymmetry O(10⁻⁴)

Small SM effects: good probes for new physics

M. Sozzi – Charged K experiments

Charge asymmetries

• $A_{g}(\pi^{\pm}\pi^{+}\pi^{-}) = -0.0070 \pm 0.0053$ (Ford 1972)

•A_g($\pi^{\pm}\pi^{+}\pi^{-}$) = - 0.0022 ± 0.0015 ± 0.0037 (HyperCP prelim.) 1997 data only: 41.8 M K⁺ and 12.4M K⁻ as byproduct largest systematics by magnetic fields, secondary beam, MC

• $A_q(\pi^{\pm}\pi^0\pi^0) = 0.051 \pm 0.028$ (from different experiments)

•Better control of systematics required

•
$$A_{\Gamma}(\mu^{\pm}\nu) = 0.0054 \pm 0.0041$$

•
$$A_{\Gamma}(\pi^{\pm}\pi^{0}) = 0.008 \pm 0.012$$

•
$$A_{\Gamma}(\pi^{\pm}\pi^{0}\gamma) = 0.009 \pm 0.033$$

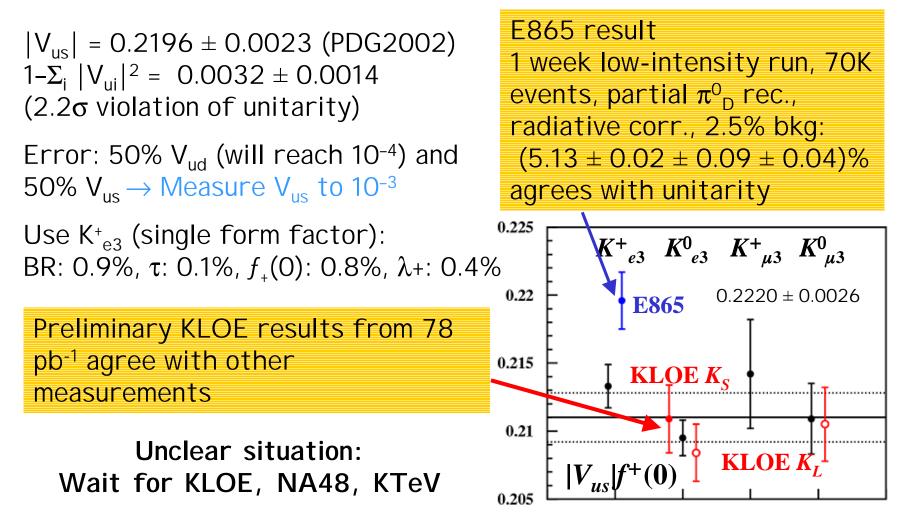
NA48/2 – K^{\pm} physics

• Search for direct CP violation in $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ and $\pi^{\pm}\pi^{0}\pi^{0}$ Dalitz plot slope asymmetries:

 $\delta(\Delta g/2g) \approx 2 \times 10^{-4}$ (SM, SUSY: 10⁻⁴ to 10⁻⁶) Strong point: simultaneous beams allow "double ratio" cancellations. $\Delta g(\tau)$ vs. $\Delta g(\tau')$ comparison.

• Precise measurement of $\pi\pi$ interaction in K_{e4} decays $(>10^{6}): \delta(a_{0}^{0}) \approx 0.01$

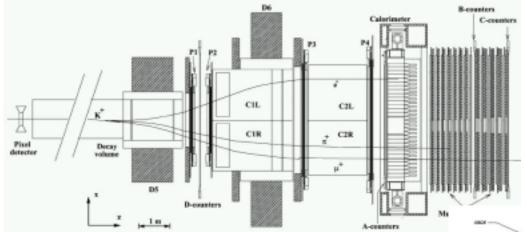
 Several rare K[±] decays and CP-violating asymmetries (no absolute K flux measurement)


10¹¹ K[±] decays expected in 120d

2003 run just finished: good performance of the experiment but low SPS efficiency to North Area

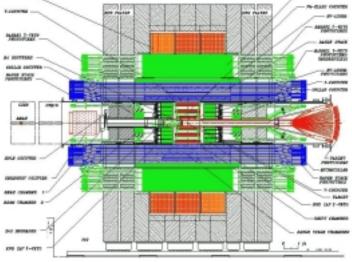
September 11th, 2003

M. Sozzi – Charged K experiments e^+e^- Alghero Workshop


Vus

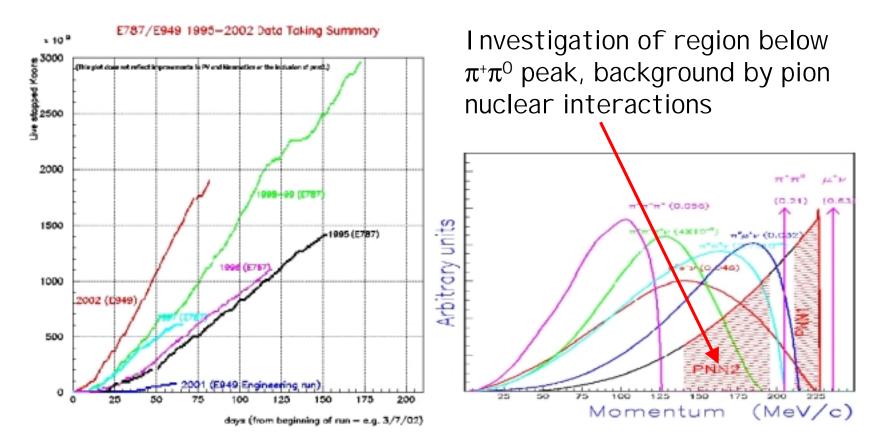
September 11th, 2003

M. Sozzi - Charged K experiments


BNL experiments

E865: completed 6 GeV/c Pixel+Cerenkov for K Spectrometer with dead region, Shashlyk calorimeter

E949 (upgraded E787) Ran 12 wks in 2002, New run? Stopped K (K/ π >3), redundant measurements


Detection of $\pi \rightarrow \mu \rightarrow e$ chain Better vetos, trigger, DAQ, flux x2

September 11th, 2003

M. Sozzi – Charged K experiments

E949 data

September 11th, 2003

M. Sozzi – Charged K experiments

More on semileptonics

No more trace of anomalous S,T couplings:

 $f_S / f_+(0) = -0.002 \pm 0.026 \pm 0.014$ $f_T / f_+(0) = -0.01 \pm 0.14 \pm 0.09$

$$f_S / f_+(0) = 0.002^{+0.020}_{-0.022} \pm 0.003$$

 $f_T / f_+(0) = 0.021^{+0.064}_{-0.075} \pm 0.026$

KEK-E246 π⁰e⁺ν measurement: 40K events

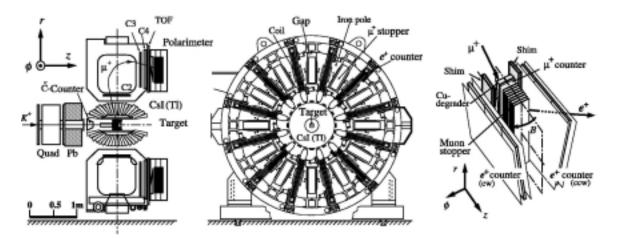
New I STRA+ $\pi^0 e^-\nu$ form factor measurements: 550K events

 μ /e universality test by KEK E-246: λ_0 extraction from BR($\pi^0\mu^+\nu$)/BR($\pi^0e^+\nu$) agrees with direct measurement

September 11th, 2003

M. Sozzi – Charged K experiments

T-violation searches


• $P_T(\mu)$ orthogonal to decay plane in 3-body decays (T-odd correlation).

Tiny (EM) FSI in SM: probe of New Physics

Mode	BR	P _T (KEK-E246)	P _T (SM)
$\pi^0\mu^+\nu$	3.3%	$(-1.12 \pm 2.17 \pm 0.90) \times 10^{-3}$	< 10 ⁻⁵
$\mu^+\nu\gamma$	0.6%	$(-0.64 \pm 1.85 \pm 0.10) \times 10^{-2}$	< 10-3

- Relation between the two discriminates BSM physics
- Stopped K experiments: main systematics from detector misalignment, and magnetic field asymmetry or large in-plane polarization

KEK E246: T-violation

660 MeV/c kaons stopped in absorber Combined result from 8.3M $\pi^0\mu^+\nu$ decays (1996-2000):

 $P_{T}(\mu) = (-1.12 \pm 2.17 \pm 0.9) \times 10^{-3}$

Experiment completed: expected final sensitivity $\delta P_{T}(\mu) \sim 1.5 \times 10^{-3} (0.6 \times 10^{-2} \text{ on I m } \xi)$ Also 10^5 good $\mu^+\nu\gamma$ decays (large backgrounds) in 1996-98

September 11th, 2003

M. Sozzi – Charged K experiments e⁺e⁻ Alghero Workshop

More T-violation

T-odd correlations without polarizations in 4-body decays: $\xi = \mathbf{q} \cdot (\mathbf{p}_1 \times \mathbf{p}_2)$ Tiny (EM) FSI in SM: probe of New Physics

Mode	BR	$A_{\xi}(SM)$	Notes
$\pi^{0}\mu^{+} u\gamma$	<6.1 ×10 ⁻⁵	1.1×10^{-4}	S,P,V,A
$\pi^{0}e^{+} u\gamma$	2.7 ×10 ⁻⁴	-0.6 × 10^{-4}	V,A only

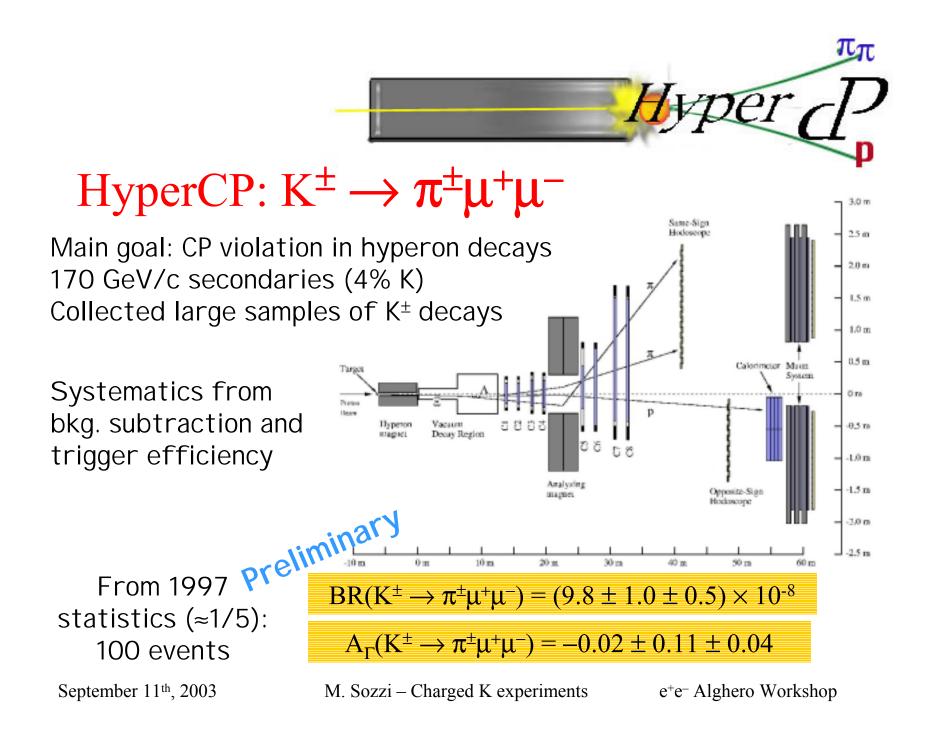
New CPV in S,P couplings: constrained by E246 result New CPV in V,A couplings: less constrained, can be $O(few 10^{-4})$ Also: $\pi^{+}\pi^{-}\mu^{\pm}\nu$ (BR = 1.4 ×10⁻⁵), despite large (10⁻¹) FSI, can give independent bounds with $O(10^5)$ events

With both K⁺ and K⁻: independent from FSI!

September 11th, 2003

M. Sozzi – Charged K experiments e⁺e⁻ Alghero Workshop

Loop-induced decays: $\pi^{\pm}I^{+}I^{-}$


• Long-distance dominated, ChPT prediction

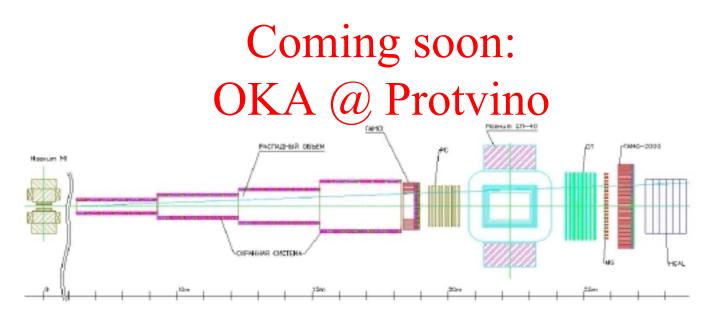
• µ/e ratio: now
$$\frac{BR(K^+ \to \pi^+ \mu^+ \mu^-)}{BR(K^+ \to \pi^+ e^+ e^-)} = 0.28$$

in agreement with SM prediction

- Inconsistency with E787 $\pi^{\pm}\mu^{+}\mu^{-}$ BR result
- $\pi^+e^+e^-$: BR at 0.5%, form factor slope at 10%. E865 10K events, 1.2% bkg.
- $\pi^{\scriptscriptstyle +}\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$: BR at 17%. E865 430 events in 6 wks (7% bkg.), stat. limited

•Tiny width asymmetries in SM (10⁻⁴ \div 10⁻⁵) could be enhanced in SUSY up to 10⁻³ for $m_{\rm H}{>}2m_{\pi}$

More decays...


• $\pi^{\pm}\gamma\gamma$: BR = (1.1 ± 0.3 ± 0.1) × 10⁻⁶: 31 events by E787 (region 2). Free O(p⁴) parameter, important O(p⁶) contribution (all terms which appear in K_L $\rightarrow\pi^{0}\gamma\gamma$ and K_S $\rightarrow\pi^{0}\gamma\gamma$ appear), tiny width asymmetry O(10⁻⁴) (up to few 10⁻³ in SUSY). Photon spectrum can discriminate among models.

• $|\pm v|$ +|-: e+ve+e-: BNL-E865 410 evts. μ +ve+e-: BNL-E865 2700 events (10-20% background). I $\pm v \mu^+\mu^-$ not yet seen (expected at similar BR). Form factors: ChPT test.

• $\pi^{\pm}\gamma$: rather *exotic* search by E787 with 6.7 × 10⁸ effective Kaons (1.4% acceptance): BR< 3.6 × 10⁻⁷. Statistically limited, more from E949.

• Search for pseudoscalar sgoldstinos (invisible or $\gamma\gamma$) K⁺ competitive (up to 10⁻⁴) for some values of phases: ISTRA+ K⁻ $\rightarrow \pi^{-}\pi^{0}$ P limits at BR < 0.5 ÷ 2 × 10⁻⁵

September 11th, 2003M. Sozzi – Charged K experimentse+e- Alghero Workshop

New RF-separated beam (CERN-Karlsruhe 1.2MV separators) at U-70 PS in construction: half of beam line ready, 3×10¹³ ppp slow-extracted

15 GeV/c kaons, alternating K+ or K-

Magnetic detector evolved from ISTRA+, GAMS

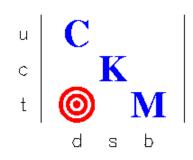
In preparation, expected run in November 2004

Measurement of 3π Dalitz plot asymmetries @ 1×10^{-4}

T-odd correlations, search for New Physics in K₁₂ decays

September 11th, 2003

M. Sozzi – Charged K experiments

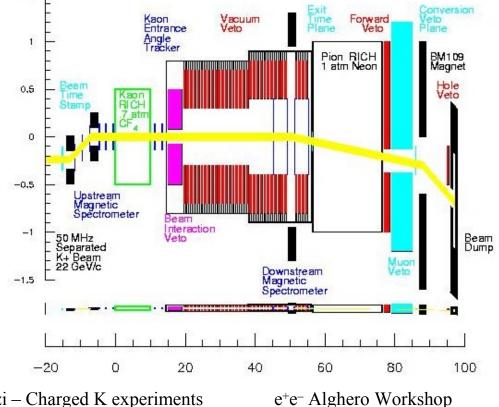

OKA vs. NA48/2 beams

•NA48/2: 10^{12} ppp, 450 GeV/c protons 3.8(1.8) × 10^7 K⁺(K⁻)/4.8 s spill (duty cycle: 4.8/16.8) 60 GeV/c, $\Delta p/p \pm 5\%$, 5% K Simultaneous K⁺/K⁻, ran in 2003. Aim: 10^{11} K[±]

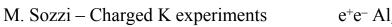
•OKA: 10^{13} ppp, 70 GeV/c protons 5(1.6) × 10^{6} K⁺(K⁻)/2 s spill (duty cycle: 2/9) 12-18 GeV/c, $\Delta p/p \pm 4\%$, 50% K Alternating K⁺/K⁻, first physics run 2005. Aim: 5 × 10^{11} K[±]

September 11th, 2003

M. Sozzi – Charged K experiments


Also: CKM at FNAL

1.5


In-flight measurement RF-separated 22 GeV/cK⁺ beam

Redundant measurements to overconstrain kinematics (spectrometers + RI CHs) Progress on RF-cavities, photon vetos, straws in vacuum

Goal: 100 SM $K^+ \rightarrow \pi^+ \nu \nu$ events, data taking in 2009 Expect more K⁺ results...

September 11th, 2003

Coming next: J-PARC

• J-PARC schedule: physics start in 2008

•50 GeV (30-40 at start) 2×1014 p/3.42 s

•2 beam lines foreseen in K-hall (one might be delayed):

• 10⁷ K⁺/s

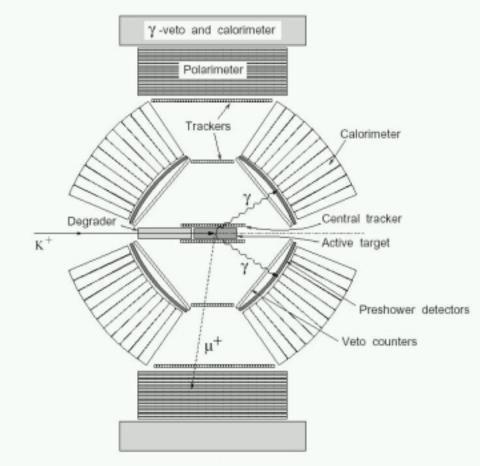
- 600-700 MeV/c
- Double-stage separated ($\pi/K<1$)
- Small (2-3%) momentum bite

M. Sozzi – Charged K experiments

Charged kaons at J-PARC

Several Lol received for charged K physics:

•K⁺ $\rightarrow \pi^+ \nu \nu$ experiment


• Upgraded polarization experiment: stopped K⁺, active polarimeter, preshower (reduced bkg., systematic x1/10). Goal: $1.3 \times 10^{10} \pi^0 \mu^+ \nu$ with $\delta P_T(\mu) \sim 1 \times 10^{-4}$. Also: $0.7 \times 10^{10} \mu^+ \nu \gamma$ with S/B ~ 8 .

•Upgraded E246 (spectrometer for negative particles) running at 1-10% for complete K⁺ decay modes measurement

•Ke3 BR measurement at 0.5% using "no-target" E246 at reduced (1/100) intensity

- Pionium and πK atom (lifetime to 6%, $|a_0-a_2|$ to 3%)
- Strange hadron spectroscopy with K[±] (12 GeV/c, separated)

T-violation experiment at J-PARC

•I mproved calorimetry

•Active segmented polarimeter: lower background and better plane definition

•Veto system: background reduction

September 11th, 2003

M. Sozzi – Charged K experiments

Charged kaons in the world

BNL-AGS	$\begin{array}{c} 6 \text{ GeV/c or at rest} \\ > 10^{12} \text{ K}^+ \end{array}$	Unseparated $\pi/K\approx 20$ or E×B separated $\pi/K<0.25$	1995+
KEK	At rest $>10^8 \mathrm{K}^+$	E×B separated π/K≈6	1996+
DAΦNE	100 MeV/c 6×10 ⁸ K [±] so far	φ-factory, pure K	2000+
Protvino-U70	25 GeV/c >10 ⁹ K ⁻	Unseparated $\pi/K\approx 30$	2001+
CERN-SPS	60 GeV/c <10 ¹¹ K [±] so far	Unseparated, $\pi/K\approx 10$	2003+
Protvino-U70	12÷18 GeV/c	Separated	2004+
FNAL-MI	22 GeV/c	Separated	2007+
J-PARC	600-700 MeV/c	Separated	2008+

M. Sozzi – Charged K experiments

A few years from now: a scenario at LHC start

- All large BR measured with high accuracy
- Universality tests
- Consistent picture of V_{us} from K decays
- $\pi^{\pm}\pi^{+}\pi^{-}$ charge asymmetries to 10⁻⁴ (and some others to 10⁻³)
- Test of ChPT predictions for 3π , $\pi^{\pm}\pi^{0}\gamma$, $\pi^{\pm}l^{+}l^{-}$, $\pi^{\pm}\gamma\gamma$, $l^{\pm}\nu l^{+}l^{-}$
- *Closer* to the theoretical accuracy in $\pi\pi$ scattering length

Physics would like to thank:

CERN: NA48/2 running

FNAL: HyperCP analysis, CKM in preparation

BNL: E949 analysis (run?)

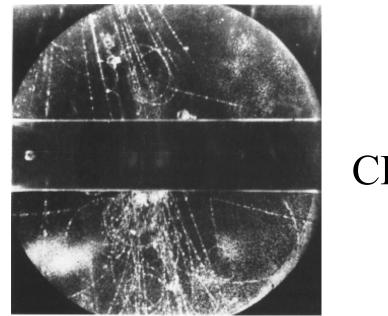
KEK: E246 ongoing analysis

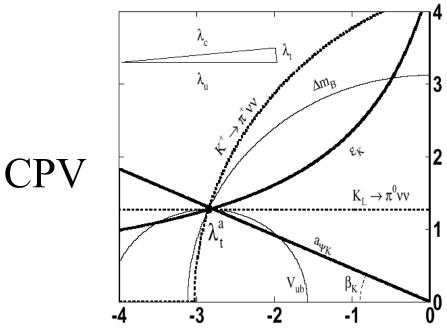
Frascati: KLOE running, upgrades

Protvino: OKA in preparation

Novosibirsk: VEPP-2000 machine in preparation

J-PARC: K beam line foreseen, several projects

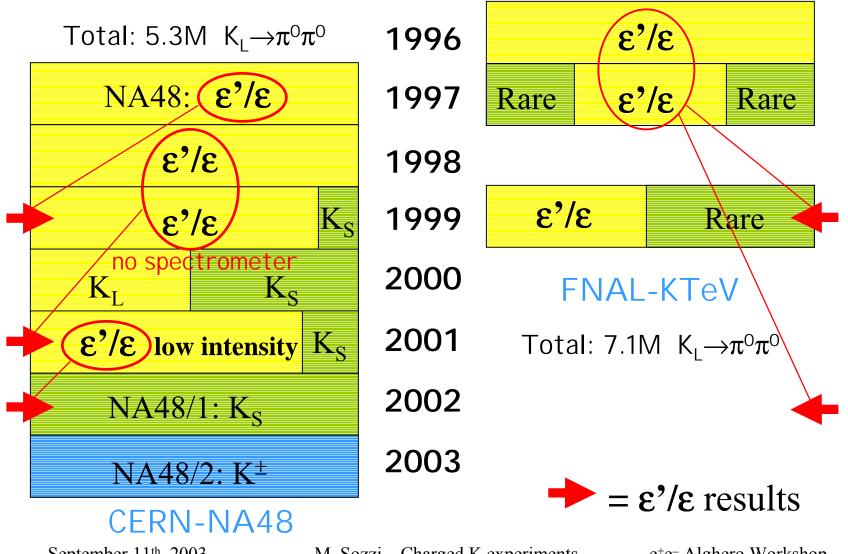



September 11th, 2003

M. Sozzi – Charged K experiments

Conclusions?

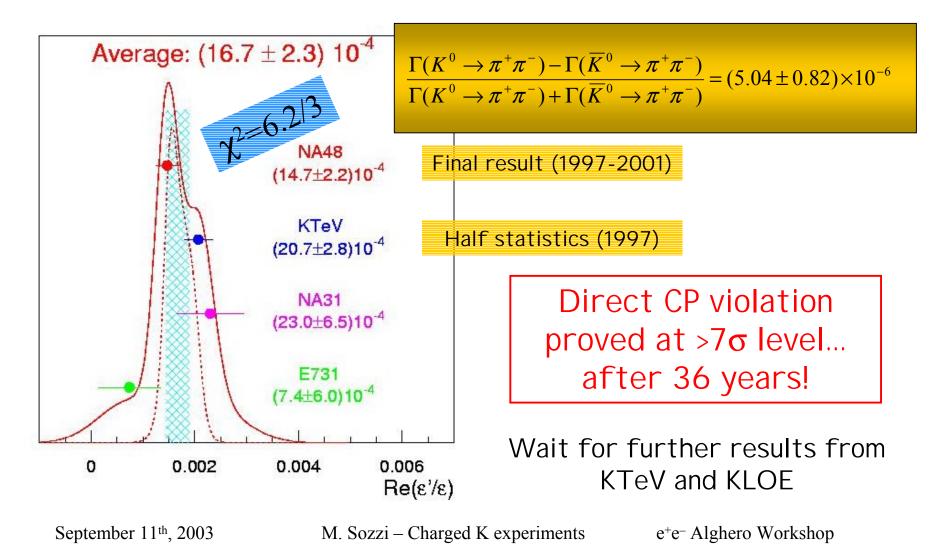
Once upon a time, (neutral) kaons delivered many surprises and precious insight...

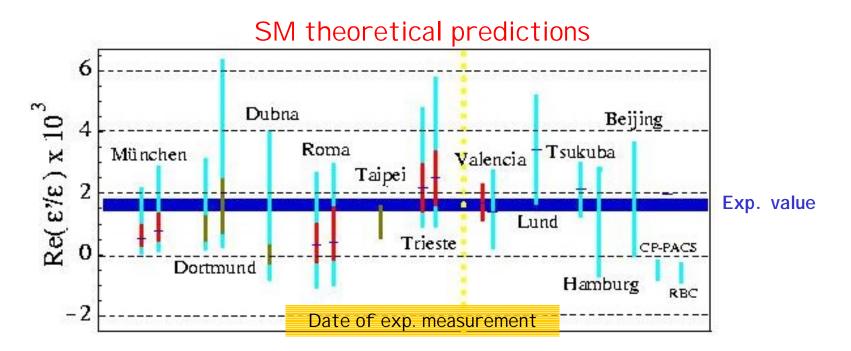

... they are still doing so today, their charged partners can join as well as effective CPV and September 11th, probes M. Sozzi – Charged K experiments e⁺e⁻ Alghero Workshop

Spare slides

September 11th, 2003

M. Sozzi – Charged K experiments

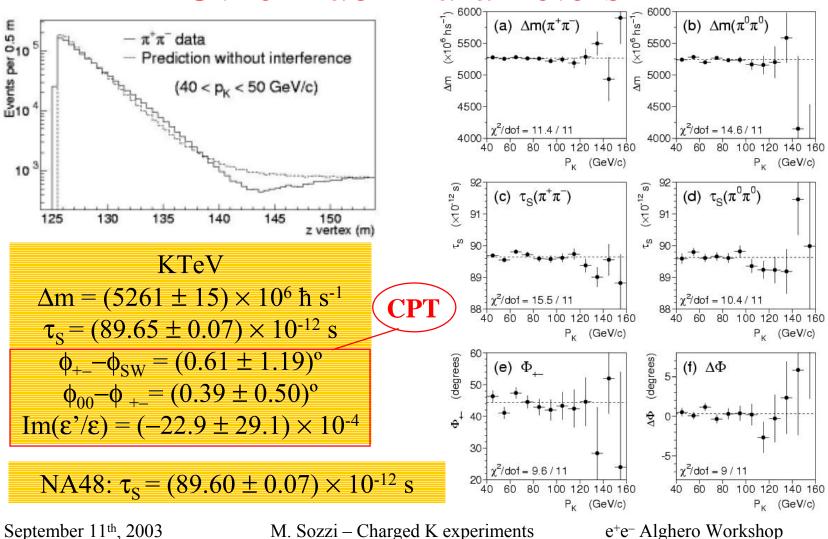

NA48 Data Taking Periods

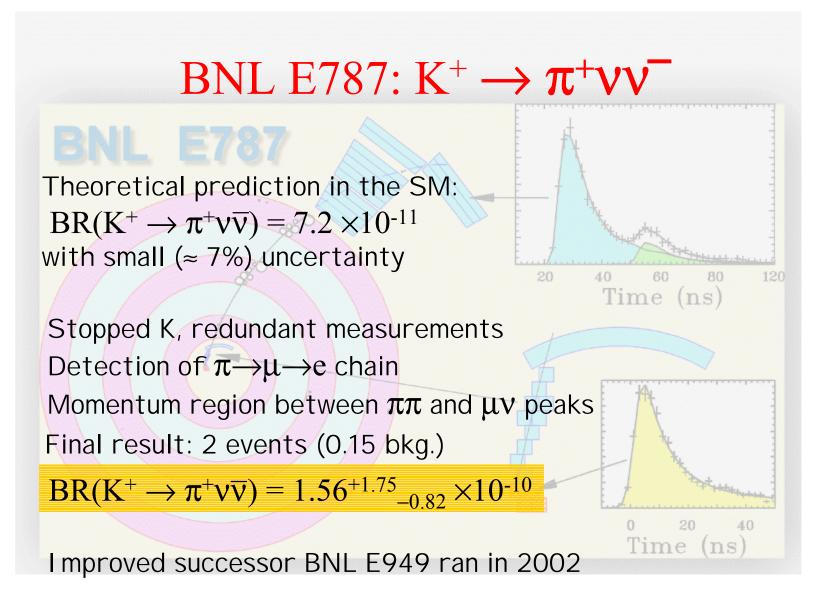

September 11th, 2003

M. Sozzi - Charged K experiments

$Re(\epsilon'/\epsilon)$ Results

$\operatorname{Re}(\epsilon'/\epsilon)$ and the SM




Despite huge efforts, ϵ'/ϵ not yet computed reliably Measured value is roughly compatible with the SM Expect improvements from lattice

September 11th, 2003

M. Sozzi – Charged K experiments

Other kaon Parameters

M. Sozzi – Charged K experiments