Updated results from CMD-2

Alexei Sibidanov
Budker Institute of Nuclear Physics

Novosibirsk

Outline

- CMD-2 and SND detectors at VEPP-2M
- Calculations of cross sections $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}(\gamma), \mu^{+} \mu^{-}(\gamma), \pi^{+} \pi^{-}(\gamma)$ comparison with other programs
- "Dressed" and "bare" cross sections
- Updated results from CMD-2

VEPP-2M collider

Operating 1974-2000

With $L_{\text {peak }} \sim 3 \times 10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ VEPP-2M is a pre- ϕ-factory

LUU
3 MeV
LINAC

B-3M
200 MeV SYNCHROBETATRON

Last generation of detectors at VEPP-2M

1 - vacuum chamber; 2 - drift chamber; 3 - Z-chamber; 4 main solenoid; 5 - compensating solenoid; 6 - BGO calorimeter; 7 - CsI calorimeter; 8 - muon range system; 9 - yoke; 10 - quadrupoles

SND

1 - vacuum chamber; 2 - drift chambers; 3 - internal scintillating counter; 6 - NaI crystals; 7 - vacuum phototridoes; 8 - absorber; 9 - streamer tubes; 11 scintillator plates;

Luminosity measurement

$$
\mathbf{L}=\frac{\mathbf{N}_{\mathrm{ee}}}{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}(\gamma)\right)}
$$

Getting number of $\mathbf{N}_{\text {ee }}$
-Select collinear events in tracking system
-Separate $\mathrm{e}^{+} \mathrm{e}^{-}$events by energy deposition in CsI calorimeter
-Crude separation - number of events in red box

- More precise separation - unbinned fit of energy distribution

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$cross section calculation

$$
\sigma_{\text {theor }}^{\text {vis }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)=\int \ldots \int \frac{\mathrm{D}\left(\mathrm{z}_{1}\right) . . \mathrm{D}\left(\mathrm{z}_{4}\right) \sigma\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{~s}\right)}{\left|1-\Pi\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{~s}\right)\right|^{2}} d \mathrm{z}_{1} . . \mathrm{d} \mathrm{z}_{4}
$$

vacuum polarization by leptons and hadrons is included by each diagram
precise matrix element for one photon at large angle relatively to initial or final particle $\left(\theta>\theta_{0}, \mathbf{E}>\Delta \mathbf{E}\right)$
along initial or final particles $\left(\theta<\theta_{0}\right)$ "jets" described by
$D(z)$ - function giving the probability for electron to have an energy

$$
\mathbf{E}_{\mathrm{e}}=\mathbf{z} \times \mathbf{E}_{\text {beam }}
$$

E.A.Kuraev and V.S.Fadin,

Sov.Jorn.Nucl.Phys. 41(1985)466
where

$$
\text { "compensator" }=\int_{0}^{\pi}\left(\frac{d \sigma}{d \Omega}\right)_{\gamma} d \Omega_{\gamma}-\int_{0}^{\theta_{0}}\left(\frac{d \sigma}{d \Omega}\right)_{\gamma} d \Omega_{\gamma} \quad \begin{aligned}
& \text { are taken into account } \\
& \text { in D functions }
\end{aligned} \quad \begin{aligned}
& \text { estimation } \\
& m_{\mathrm{e}}
\end{aligned}
$$

is required to remove from $D(z)$ the part of cross section caused by emission of one photon at large angles
A.B.Arbuzov, E.A.Kuraev et al., JHEP 10 (1997)

Mod.Phys.Lett., A13 (1998) 2305

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$code comparison with BHWIDE

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mu^{+} \mu^{-}$cross section calculation

vacuum polarization by leptons
and hadrons is included by each diagram
precise matrix element for one photon at large angle relatively to initial particle $\left(\theta>\theta_{0}, \mathbf{E}>\Delta \mathbf{E}\right)$
one photon for FSR + Interference
along initial particles $\left(\theta<\theta_{0}\right)$ - "jets"
accuracy estimation $\sim 0.2 \%$

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mu^{+} \mu^{-}$code comparison with KKMC

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-}$cross section calculation

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-}$code comparison with ...?

No program with the same or better precision

What is $\mathbf{R (s)}$ in dispersion relations?

Photon vacuum polarization

All available $\mathbf{e}^{+} \mathbf{e}^{-}$data were used to calculate dispersion integral

$$
\begin{aligned}
& \prod_{1}(s)=\left(\frac{\alpha}{\pi}\right) \prod_{1}(s)+\left(\frac{\alpha}{\pi}\right)^{2} \prod_{2}(s)+\ldots 0^{-2} \quad \prod_{(\mathrm{s})=\prod_{\mathrm{i}}(\mathrm{~s})+\prod_{\mathrm{h}}(\mathrm{~s})}^{\sim 10^{-5}} \\
& \prod(\mathrm{~s})=\frac{\mathrm{s}}{4 \pi^{2} \alpha}\left(\mathrm{P} \int_{4 \mathrm{~m}_{\pi}^{2}}^{\infty} \frac{\sigma_{\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \rightarrow \text { final }}\left(s^{\prime}\right) d s^{\prime}}{s-s^{\prime}}-\mathrm{i} \pi \sigma_{\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{\prime} \rightarrow \text { final }}(s)\right)
\end{aligned}
$$

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-}$

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
R.R.Akhmetshin et al., PL B 476(2000) 33

$\mathrm{L}=119.6 \mathrm{nb}^{-1}$

 $11200 \pi^{+} \pi^{-} \pi^{0}$ events in ω mes
$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \phi \rightarrow \mathbf{K}_{\mathbf{L}} \mathbf{K}_{\mathbf{S}}$

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow 4 \pi$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \omega \pi^{0}, \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}
$$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}
$$

CMD-2 data in 4π channel is lower!

After reanalysis CMD-2 data agrees with SND data

To be published in PL

Neutral kaon mass measurement (preliminary)

$$
\int L d t \simeq 355 n b^{-1}, e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0}, K_{S}^{0} \rightarrow \pi^{+} \pi^{-}, N_{K_{S}^{0}}=4.9 \cdot 10^{4}
$$

Resonant depolarization beam energy measurement Systematic due to initial state radiative corrections, beam energy measurement and nonlinearity shift are energy dependent

g-2 of muon

Conclusion

- Codes for calculations of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}(\gamma), \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}(\gamma)$, $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}(\gamma)$ cross sections with accuracy 0.2%
- "Dressed" cross sections for dynamic studies, "bare" cross sections for dispersion relations
- Updated results have been published hep-ex/0308008
- Good agreement between SM calculations for $(g-2)_{\mu}$ based on $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons and $\tau \rightarrow \nu_{\tau}$ hadrons with experimental value

CMD-3

1 - vacuum chamber; 2 - drift chamber; 3-BGO calorimeter; 4-Z-chamber; 5 - main solenoid; 6 - LXe
calorimeter; 7 - CsI calorimeter; 8 - yoke; 9 compensating solenoid;

CMD-3
\qquad

