Updated results from CMD-2

Alexei Sibidanov Budker Institute of Nuclear Physics Novosibirsk

Outline

CMD-2 and SND detectors at VEPP-2M

• Calculations of cross sections $e^+e^- \rightarrow e^+e^-(\gamma)$, $\mu^+\mu^-(\gamma)$, $\pi^+\pi^-(\gamma)$ comparison with other programs

"Dressed" and "bare" cross sections

• Updated results from CMD-2

 1 – vacuum chamber; 2 – drift chamber; 3 – Z-chamber; 4 – main solenoid; 5 – compensating solenoid; 6 – BGO calorimeter; 7 – CsI calorimeter; 8 – muon range system; 9 – yoke; 10 – quadrupoles 1 – vacuum chamber; 2 – drift chambers; 3 – internal scintillating counter; 6 – NaI crystals; 7 – vacuum phototridoes; 8 – absorber; 9 – streamer tubes; 11 – scintillator plates;

Luminosity measurement

L= $\frac{N_{ee}}{\sigma(e^+e^- \rightarrow e^+e^-(\gamma))}$

Getting number of ${\sf N}_{\sf ee}$

Select collinear events in tracking system

•Separate e⁺e⁻ events by energy deposition in CsI calorimeter

•Crude separation – number of events in red box

•More precise separation – unbinned fit of energy distribution

$e^+e^- \rightarrow e^+e^-$ cross section calculation

is required to remove from D(z) the part of cross section caused by emission of one photon at large angles

 $\frac{\sigma_{\text{theor}}^{\text{vis}}(e^+e^- \to e^+e^-)}{|1 - \Pi(z_1, z_2, s)|^2} dz_1 \dots dz_4$

vacuum polarization by leptons and hadrons is included by each diagram

precise matrix element for one photon at large angle relatively to initial or final particle ($\theta > \theta_0$, $E > \Delta E$)

along initial or final particles ($\theta < \theta_0$) "jets" described by D(z) – function giving the probability for electron to have an energy

> E_=z×E_{beam} E.A.Kuraev and V.S.Fadin, Sov.Jorn.Nucl.Phys. 41(1985)466

in D functions

all terms $\left(\frac{\alpha}{\pi}\ln\frac{s}{m_{\star}^2}\right)^{n_{\gamma}}$

accuracy estimation $\sim 0.2 \%$

A.B.Arbuzov, E.A.Kuraev et al., JHEP 10 (1997) Mod.Phys.Lett., A13 (1998) 2305

are taken into account

$e^+e^- \rightarrow \mu^+\mu^-$ cross section calculation

vacuum polarization by leptons and hadrons is included by each diagram

precise matrix element for one photon at large angle relatively to initial particle ($\theta > \theta_0$, $E > \Delta E$)

one photon for FSR + Interference

along initial particles $(\theta < \theta_0)$ - "jets"

accuracy estimation ~ 0.2 %

$e^+e^- \rightarrow \pi^+\pi^-$ cross section calculation

$e^+e^- \rightarrow \pi^+\pi^-$ code comparison with ...?

No program with the same or better precision

What is R(s) in dispersion relations?

Photon vacuum polarization

All available e⁺e⁻ data were used to calculate dispersion integral

Neutral kaon mass measurement (preliminary)

$\int Ldt \simeq 355 \ nb^{-1}, \ e^+e^- \to K^0_S K^0_L, \ K^0_S \to \pi^+\pi^-, \ N_{K^0_S} = 4.9 \cdot 10^4$

497.8

CMD-2 (2003)

Resonant depolarization beam energy measurement M(K⁰), MeV/c² Systematic due to initial state radiative corrections, beam energy 497.7 497.65 497.7 497.6 measurement and nonlinearity shift are energy dependent Systematic source Shift. keV Error. keV Beam energy measurement $13 \div 19$ **CMD 85** Energy calibration model dependency 3 Radiative corrections to initial state $-(80 \div 630)$ **2** ÷ 12 **CMD 87** Beam energy spread correction + 3 0.3 Radiative corrections to final state - 6 6 Nonlinearity shift $60 \div 140$ 6 ÷ 15 **PDG FIT (2002)** Correction for pion decay in flight +43 Background 4 Z-chamber thermal expansion 3 Selection criteria 6 NA48 (2001) Fit bounds 8 Charged pion mass uncertainty 0.04

 $M_{K_S^0} = 497.634 \pm 0.016 \pm 0.019 \; {\rm MeV}/c^2$ $\tilde{M}_{K_{C}^{0}}^{(fit)} = 497.642 \pm 0.016 \text{ MeV}/c^{2}$

M.Davier et al., hep-ph/0308213

Conclusion

- Codes for calculations of $e^+e^- \rightarrow e^+e^-(\gamma)$, $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$,
- $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ cross sections with accuracy 0.2%
- "Dressed" cross sections for dynamic studies, "bare" cross sections for dispersion relations
- Updated results have been published hep-ex/0308008
- Good agreement between SM calculations for $(g-2)_{\mu}$ based on $e^+e^- \rightarrow$ hadrons and $\tau \rightarrow v_{\tau}$ hadrons with experimental value

CMD-3

System	CMD-2	CMD-3
Drift chamber	512 sensitive wires, $\sigma_{R-\phi}=250 \ \mu m$, $\sigma_{Z}=5 \ mm$, $\sigma_{\theta}=1.5 \times_{10}^{-2}$, $\sigma_{\phi}=7 \times_{10}^{-3} \ \sigma_{dE/dx}=0.2 \times E$	1218 sensitive wires, $\sigma_{R-\phi}=140 \ \mu m$, $\sigma_Z=2 \ mm$, $\sigma_{\theta}=7\times10^{-3}$, $\sigma_{\phi}=4\times10^{-3}$, $\sigma_{dE/dx}=0.15\times E$
Z-chamber	Double layers proportional chamber with cathode strips, anode wires are combined to 2×32 sectors, number of cathode strips – 512, $\sigma_z=2$ mm, $\sigma_t=5$ ns, $\Omega=0.8\times4\pi$ steradian.	
Barrel Calorimeter	892 CsI crystals in 8 octants, readout – PMT, thickness – 8.1 X_0 , $\sigma_E/E=8.5\%$ at 100÷700 MeV, $\sigma_{\phi,\theta}=0.03\div0.02$ rad.	1152 CsI crystals in 8 octants, readout – PIN photodiodes, 0.4 m ³ LXe, thickness –5 $X_0+8.1 X_0=13.1 X_0, \sigma_E/E=4.7\div3\%$ at 100÷900 MeV, $\sigma_{\phi,\theta}=0.005$ rad.
Endcap Calorimeter	$\begin{array}{c} 680 \ BGO \ crystals \ in \ 2 \ endcaps \ readout - \\ vacuum \ phototriodes, \ thickness - 13.4 \ X_0, \\ \sigma_E/E=8\div4\% \ at \ 100\div700 \ MeV, \ \sigma_{\phi,\theta}=0.03\div0.02 \\ rad. \end{array}$	680 BGO crystals in 2 endcaps readout – PIN photodiodes, thickness – 13.4 X ₀ , $\sigma_E/E=8\div3.5\%$ at 100÷900 MeV, $\sigma_{\phi,\theta}=0.03\div0.02$ rad.
Range system	Streamer tubes, 2 double layers, σ_Z =5 cm	Plastic scintillator counters, $\sigma_t < 1$ ns
Superconductive solenoid	Magnetic field 1 T, thickness 0.38X ₀	Magnetic field 1.5 T, thickness 0.18 X ₀

