Session:High Luminosity Issues Part I: Beam-Beam Interaction Chairpersons: F. Ruggiero, M. Zobov

Upgrade of Particle Factories C. Biscari, INFN-LNF Negative Momentum Compaction at DAΦNE M. Zobov, INFN-LNF Negative Momentum Compaction at KEKB H. Ikeda, KEK Beam-Beam with Large Crossing Angle P. Raimondi, LNF-INFN \bullet Short Bunch at IP A. Gallo, LNF-INFN Study of Beam-Beam Interaction at VEPP-4: Tune Plane Appearence and Cubic Non-linearity Effect A. Temnykh, CESR

PAST, PRESENT AND FUTURE

C. BISCARI

Basic concepts:

Luminosity is generally higher for high energy rings for several reasons, some of the more beneficial are:

1) Tune shifts scales with 1/Energy (E) leading to a fundamental linear increase of the luminosity vs Energy

2) Radiation damping-time decrease with 1/E³ leading to higher limits for tune-shifts

- 3) Touschek effect decrease with 1/E³
- 4) Natural bunch lenght shorter

5) Beam stiffer, single and multi bunch instabilities decrease with 1/E

P. RAIMONDI

Beam-beam scalings and constraints

$$L \cong f_{coll} \frac{N^2}{4\pi \cdot \sqrt{\varepsilon_x \varepsilon_y \beta_x \beta_y}} \cdot H \cdot F$$

 f_{coll} Bunch collision frequency \implies fill all buckets, increase RF-frequency $H \approx 1$ Hourglass factor for $\beta_x, \beta_y \ge \sigma_z \implies$ Reduce $\sigma_z \begin{cases} \alpha_c < 0, \\ \text{Strong RF} \end{cases}$ $F \approx 1$ Crossing angle factor for $\theta_c \sigma_z \ll \sigma^2 \implies$ Reduce θ_c , Crab-crossing $\Delta Q \propto \frac{N}{\varepsilon} \frac{F}{E}$ Linear beam-beam tune shift \implies Maximize ΔQ $\begin{cases} BB \text{ limit:} \Delta Q < \Delta Q_{\text{max}} = g \left(\left(\frac{\tau_{rev}}{\tau_{damp}} \right)^{1/3}, Q, J_z \right) & \text{Increase damping,} \\ Optimize \ Q_x, Q_y, \\ \text{Round beams} \end{cases}$ Parasitic BB collisions: $d_{sep} \ge 10\sigma \quad \Longrightarrow \quad \text{Increase } \theta_c$

Tune plane appearance: beam-beam interaction

Vertical beam size from luminosity (r.u.)

Particle loss rate from positron beam

I+ ~ 6.2mA, I- ~ 10.2mA $\xi x = 0.015, \xi y = 0.060$

A. TEMNYKH, TUNE SCANS AT VEPP-4

Upgrade of Particle Factories

	E _{cm} (GeV)	Lnow	Lfuture
KEK-B	10.6	1.06 10 ³⁴	<i>10</i> ³⁶
PEP-II	10.6	6.6 10 ³³	<i>10</i> ³⁶
CESR	3-10.6	1.3 10 ³³	0.15-1.3 10 ³³
BEPC	2 - 5.6	10 ³¹	<i>10³³</i>
VEPP2000	1 - 2	_	<i>10</i> ³²
DAFNE2	2	_	<i>10</i> ³²
DAΦNE	1	7.8 10 ³¹	>10 ³³

C. BISCARI

super B factories

	KEK-B		PEP II		
	Super	Hyper	next	Super	Hyper
E + (GeV)	3.5	3.5	3.1	3.5	3.5
<i>E</i> - (GeV)	8.0	8.0	9.0	8.0	8.0
<i>C</i> (m)	3016	3016	2199	2199	2199
$L (10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	10	40-100	2.5 - 4	20	100
$\beta^{*}(\mathbf{m})(\mathbf{h})$	30	15	0.5	0.3	0.15
$\beta^{*}(m)(v)$	0.003	0.003	0.0065	0.0037	0.0015
ϵ (n rad) (h)	33	33	44	44	44
ϵ (n rad) (v)	2	0.33	0.44	0.44	0.44
θ (mrad)	15	0	0 - 4	10	15
ξ(h)	0.068	0.1	0.08	0.10	0.10
ξ (v)	0.05	0.2	0.08	0.10	0.10
N bunches	5018	5018	1700	3400	7000
I+ (A)	9.4	17.2	4.5	11.0	10.3
I - (A)	4.1	7.8	2.0	4.8	2.35
f _{RF} (MHz)	509	509	476	476	952

10³⁶ PEP II

Increase n of bunches x 2 : 7000 f_{rf} x2 : 950 MHZ feedback upgrade (<1 nsec)

lowering β_y *nearer quads iP decrease* N+ N-

increase $\theta \sim 15 \text{ mrad}$

C. BISCARI

Light Quark Factories

Collider	VEPP2000	DAFNE 2	
status	in construction	design study	
<i>E</i> (GeV)	1.	1.	
<i>C</i> (m)	24	97	
$L (10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	1	1	
IPs	2	1	
$\beta^{*}(m)(h / v)$	0.1 / 0.1	1.5 / 0.025	
ϵ (μ rad) (h / v)	0.136 / 0.136	0.5 / 0.0025	
θ (mrad)	0	± 15	
φ (rad)	0	0.26	
σ _z (cm)	3	1.1	
N _b (10 ¹⁰)	10	3	
ξ (h / v)	0.1 / 0.1	0.014 / 0.024	
N bunches	1	30	
I (A)	0.20	0.45	
f _{RF} (MHz)	172	368.3	
V (MV)	0.12	0.25	

DAPNE with Luminosity 10^{34}

set of consistent parameters

C. BISCARI

Beam Dynamics with $\alpha_c < 0$

The DA Φ NE lattice is flexible enough to provide collider operation with a negative momentum compaction (P. Raimondi). There can be several advantages for beam dynamics and luminosity performance in this case:

- Bunch is shorter with a more regular shape
- Longitudinal beam-beam effects are less dangerous
- Microwave instability threshold is higher (?)
- Sextupoles are not necessary

M. ZOBOV

Negative alfa tests at KEKB

Ikeda, KEKb

Strong RF Focusing \Rightarrow **variable** σ_z

A Possible Working Point for a Φ -Factory ($E_{ring}=0.51 \text{ GeV}$) with $\sigma_z(IP)=2 \text{ mm}$:

Reference Expressions:

$$\sigma_{z}(IP) = \alpha_{c} L \left(\frac{\sigma_{E}}{E}\Big|_{0}\right) K[\rho(s), \beta_{l}(s)]$$

with

$$K[\rho(s), \beta_l(s)] = \sqrt{\frac{2 + \cos \mu}{6(1 - \cos \mu)}}$$

if $\rho(s)=kost$. and $R_{56}(s)$ grows linearly in the arcs.

$$\sigma_z(IP) = \sigma_z(RF) \sqrt{\frac{1 + \cos \mu}{2}}$$

A. GALLO

$$\sigma_{z}(IP) = 2mm; \ \sigma_{z}(RF) = 10mm \implies \mu = 155^{\circ}$$

$$K[\rho(s), \beta_{l}(s)] = 0.27 \qquad \left.\frac{\sigma_{E}}{E}\right|_{0} = 4.5 \cdot 10^{-4};$$

$$L = 100m; \qquad \alpha_{c} = 0.16; \qquad f_{RF} = 500 MHz;$$

$$V_{RF}(\mu = 180^{\circ}) = 12.2 MV;$$

$$V_{RF}(\mu = 155^{\circ}) = 11.6 MV;$$

$$\left.\frac{\sigma_{E}}{E}(\mu = 155^{\circ}) = 1.1 \cdot 10^{-3};$$

$$\left.\frac{\Delta E}{E}\right|_{max} @ RF = 4.5 \cdot 10^{-3};$$

$$\left.\frac{\Delta E}{E}\right|_{max} @ IP = 1.1 \cdot 10^{-2}$$

Comparison with Numerical Results:

These analytical results have been compared with multi-particle tracking simulations of the bunch longitudinal dynamics in a strong RF focusing configuration. Uniform R_{56} growth and emission rate in the arcs have been assumed in the tracking. The agreement is evident.

A. GALLO

Other new ideas for high L • collisions with neutralized beams (four beams) + feedback system beam 2 e⁻ beam 1 e⁻ 3.5 GeV 8 GeV collision beam $4 e^+$ beam $3 e^+$ •ring against linac

- Monochromators
- Collisions with large crossing angle:

 $E_{cm} = 2E_{beam} \cos(\theta_c/2)$, e.g. $\theta_c/2 = 60^{\circ}$, $E_{beam} = 1 \text{GeV}$

Luminosity expectations with large θ_c

Crab crossing case: probably very similar (within a factor 4 around the 10³⁴ region) to the low-crossing angle solution, since most of the gains are suppressed by the lenghtening of the interaction length.

Another disadvantage is the need of several MeV of Crabcavities.

No-Crab crossing case: also very similar to the lowcrossing angle solution, since most of the gains are suppressed by the larger horizontal interaction width. However very small tune shifts and micro-betas lead to a new regime of BB interactions, and probably further investigation is worthed.

P. RAIMONDI

Collisions with large X-ing angle

Possible big advantages come from:

-a simpler and more flexible IR design, where I*<0.2m could be possible, togheter with very small aperture, low chromaticity final doublet

-kaons will be boosted, so it might be possible to have the detector decoupled by the IR, with big advantages in the design of collider and detector (see F.Bossi talk)

-reversing the direction of one of the beams, we could increase the Ecm very easily allowing the high energy solution as well

On the opposite side a new detector has to be built, wherease the "standard solution" might require just an upgrade of the existing one.

P. RAIMONDI

CONCLUSIONS

- New ideas to increase luminosity can/will be tested in the near future:
- Crab cavities (KEK-B)
- Collisions with round beams (VEPP2000)
- **D** Negative α_{c} and strong damping (KEK-B, DA Φ NE)
- □ Strong RF focussing (CESR?)
- The approach of the DA Φ NE machine team is sound: L=10³⁴ is already a challenging target
- L=10³⁵ needs many combined new ideas/technologies
 higher risk and longer time scale