

CESR-c

D.Rubin for the CESR-c working group

S.Belomestnykh,K.Berkelman,M.Billing,G.Codner, J.Crittenden,A.Devred, G.Dugan,R.Ehrlich, M.Forster, Z.Greenwald,D.Hartill, Y.He, R.Helms, G.Hoeffstetter,J.Hylas, Y.Li,V.Medjidzade, R.Meller, A.Mikhailichenko, N.Mistry,T.Moore,E.Nordberg,M.Palmer, S.Peck, D.Rice, J.Rogers, D.Sagan, J.Sikora,E.Smith,J.Smith,A.Temnykh,M.Tigner

September 10, 2003

CESR-c

Energy reach 1.5-6GeV/beam

Electrostatically separated electron-positron orbits accomodate counterrotating trains

Electrons and positrons collide with ±~3 mrad horizontal crossing angle

9 5-bunch trains in each beam (768m circumference)

CESR-cIR

Summer 2000, replace 1.5m REC permanent magnet final focus quadrupole with hybrid of pm and superconducting quads

Intended for 5.3GeV operation but perfect for 1.5GeV as well

CESR-cIR

 $\beta^* \sim 10mm$

H and V superconducting quads share same cryostat

20cm pm vertically focusing nose piece

Quads are rotated 4.5° inside cryostat to compensate effect of CLEO solenoid $\frac{2}{3}$

Superimposed skew quads permit fine tuning of compensation

At 1.9GeV, very low peak β => Little chromaticity, big aperture

September 10, 2003

CLEO solenoid $1T(\psi)-1.5T(\Upsilon)$

Good luminosity requires zero transverse coupling at IP (flat beams)

Solenoid readily compensated even at lowest energy

Beam-beam effect

- In collision, beam-beam tune shift parameter $\sim I_{b}/E$
- Long range beam-beam interaction at 89 parasitic crossings ~ I_{b}/E (for fixed emittance) (and this is the current limit at 5.3GeV)

Single beam collective effects, instabilities

- Impedance is independent of energy
- Effect of impedance ~I/E

CESR-c Energy dependence (scaling from 5.3GeV/beam to 1.9GeV/beam)

Radiation damping and emittance

Damping

- Circulating particles have some momentum transverse to design orbit (P_t/P)
- In bending magnets, synchrotron photons radiated parallel to particle momentum $\Delta P_t/P_t = \Delta P/P$ RF accelerating cavities restore energy only along design orbit, P-> P+ ΔP so that transverse momentum is radiated away and motion is damped Damping time $\tau \sim$ time to radiate away all momentum

Radiation damping

In CESR at 5.3 GeV, an electron radiates ~1MeV/turn ~> τ ~ 5300 turns (or about 25ms)

```
SR Power ~ E^2B^2 = E^4/\rho^2 at fixed bending radius 1/\tau ~ P/E ~ E^3 so at 1.9GeV, \tau ~ 500ms
```

Longer damping time

- Reduced beam-beam limit
- Less tolerance to long range beam-beam effects
- Multibunch effects, etc.
- Lower injection rate

Emittance

- Closed orbit depends on energy offset $x(s) = \eta(s)\delta$
- Energy changes abruptly with radiation of synchrotron photon
- Electron begins to oscillate about closed orbit generating emittance, $\sigma = (\epsilon \beta)^{1/2}$
- Lower energy -> fewer radiated photons and lower photon energy
- Emittance $\epsilon \sim E^2$

Emittance

•
$$L \sim I_B^2 / \sigma_x \sigma_y = I_B^2 / (\epsilon_x \epsilon_y \beta_x \beta_y)^{1/2}$$

- $\epsilon_x \sim \epsilon_y$ (coupling)
- I_{B}/ϵ_{x} limiting charge density
- Then I $_{\rm B}$ and therefore L $\,$ ~ $\epsilon_{\rm x}$

CESR (5.3GeV), $\varepsilon_x = 200$ nm-rad CESR (1.9GeV), $\varepsilon_x = 30$ nm-rad

Damping and emittance control with wigglers

September 10, 2003

In a wiggler dominated ring

- 1/ $\tau \sim B_w^2 L_w$
- $\varepsilon \sim B_W L_W$
- σ_E/E ~ (B_w)^{1/2} nearly independent of length (B_w limited by tolerable energy spread)
 Then 18m of 2.1T wiggler
 - -> τ ~ 50ms
 - -> 100nm-rad < ϵ <300nm-rad

Superconducting wiggler

7-pole, 1.3m 40cm period, 161A, B=2.1T

September 10, 2003

September 10, 2003

Optics effects - I deal Wiggler

$$\Delta y' = -\frac{B_0^2 L}{2(E_0/ce)^2} \left(y + \frac{2}{3} \left(\frac{2\pi}{\lambda} \right)^2 y^3 + \dots \right)$$

September 10, 2003

Optics effects - I deal Wiggler

Vertical focusing effect is big, $\Delta Q \sim 0.1/\text{wiggler}$ But is readily compensated by adjustment of nearby quadrupoles

Cubic nonlinearity ~ $(1/\lambda)^2$ We choose the relatively long period -> λ = 40cm

Finite width of poles leads to horizontal nonlinearity

6 Wiggler Linear Optics

Lattice parameters Beam energy[GeV] 1.89 $\beta^*_{v}[mm]$ 12 $\beta^*_{h}[m]$ 0.56 Crossing angle[mrad] 3.8 Q_v 9.59 Q_h 10.53 Number of trains 9 Bunches/train 4 Bunch spacing[ns] 14 Accelerating Voltage[MV] 10 Bunch length[mm] 9 2.1 Wiggler Peak Field[T] Wiggler length[m] 1.3 Number of wigglers 6 ε_{x} [mm-mrad] 0.15 0.08 $\sigma_{\rm F}/{\rm E}[\%]$

September 10, 2003

Data: hep after correction

First wiggler installed 9/02 Beam energy = 1.84GeV

- -Optical parameters in IR match CESR-c design
- -Measure and correct betatron phase and transverse coupling
- Measurement of lattice parameters (including emittance) in good agreement with design

September 10, 2003

-Measurement of betatron tune vs displacement consistent with modeled field profile and transfer functon

September 10, 2003

D. Rubin - Cornell

-Injection

D. Rubin - Cornell

-Single beam stability

2pm + 1 sc wigglers

6 sc wigglers

September 10, 2003

Machine modeling

-Wiggler transfer map

-Compute field table with finite element code

-Tracking through field table -> transfer maps

D. Rubin - Cornell

Machine modeling

- Fit analytic form to field table

$$B_{fit} = \sum_{n=1}^{N} B_n(x, y, s; C_n, k_{xn}, k_{yn}, k_{sn}, \phi_n)$$

$$B_n x = -C \frac{k_x}{k_y} \sin(k_x x) \sinh(k_y y) \cos(k_s s + \phi_s)$$

$$B_n y = C \cos(k_x x) \cosh(k_y y) \cos(k_s s + \phi_s)$$

$$B_n s = -C \frac{k_s}{k_y} \cos(k_x x) \sinh(k_y y) \sin(k_s s + \phi_s)$$

with $k_y^2 = k_x^2 + k_s^2$

Machine modeling -Wiggler map

D. Rubin - Cornell

Simulation

Machine model includes: Wiggler nonlinearities Beam beam interactions (parasitic and at I P) Synchrotron motion Radiation excitation and damping

- -Weak beam
 - -200 particles
 - initial distribution is gaussian in x,y,z
 - track ~ 10000 turns

D. Rubin - Cornell

Wiggler Status

-Single wiggler installed October 2002 and tested October - December 2002

- Five additional wigglers installed Spring O3 Machine studies with 6 wigglers August 2003

-Remaining 6 wigglers to be installed early 04

CESR-c design parameters

Beam Energy [GeV]	1.55	1.88	2.5	5.3
Luminosity [+10 ³⁰]	150	300	500	1250
i⊾ [mA/bunch]	2.8	4.0	5.1	8.0
I _{beam} [mA/beam]	130	180	230	370
ξ _¥	0.035	0.04	0.04	0.06
گ _ا	0.028	0.036	0.034	0.03
ರ್ಕ ∕E₀ [×10³]	0.75	0.81	0.79	0.64
T _{X,Y} [msec]	69	55	52	22
B _W [Tesla]	2.1	2.1	1.75	1.2
β _χ * [cm]	1.0	1.0	1.0	1.8
ε _* [nm-rad]	230	220	215	220

September 10, 2003

Energy Calibration

Collide I $_{\rm T} \sim$ 12 mA and scan

I dentification of $\psi(2S)$ yields calibration of beam energy

D. Rubin - Cornell