12th. Sep. 2003 D2-WS (Alghero)

Latest results from KEK on Hypernuclear Physics and Perspective at J-PARC

• γ spectroscopy of ¹¹ $_{\Lambda}$ B (E518: 2002)

n-rich hypernuclear production with

¹⁰B(π^{-} ,K⁺) ¹⁰ Li reaction (E521:2002-3)

• np/nn double coincidence detection from ${}^{5}{}_{\Lambda}$ He & ${}^{12}{}_{\Lambda}$ C (E462/508: 2000-2002)

Proposed experiments at J-PARC

H.Outa (RIKEN)

γ spectroscopy of ¹¹ ^Λ B (E518: 2002)

AN effective interaction

Spin-dependent forces of p-shell hypernuclei

Present status of the experiments with Hyperball

Structure of ¹¹_AB

Many bound states exist

5.920

5.164

4.774

3.587

 $\frac{11}{5}B(3/2^{+} \rightarrow 1/2^{+})$

$$P^{11}_{\Lambda}B(1/2^+ \rightarrow 5/2^+)$$

Observed γ -rays from $^{11}_{\Lambda}B$

Er(keV)	number of events	relative intensity
262	71	0.14
454	54	0.13
500	50	0.13
564	78	0.21
1482	203	1.00
2479	45	0.37
3286	10	0.10

relative intensity =			
[#event]	[efficiency of Ge]		
203	[efficiency@1482keV]		

np/nn double coincidence detection from ${}^{5}_{\Lambda}$ He & ${}^{12}_{\Lambda}$ C (E462/508: 2000-2002)

 Γ_n / Γ_p ratio (theoretical & experimental results)

Select ∧ N→NN events without ∧ NN→NNN & FSI effect

Particle identification

gated ¹²_AC ground state

gated ${}^{5}_{\Lambda}$ He ground state

Energy spectra of $\pi/p/d$ from the decay of $\frac{5}{\Lambda}$ He

Neutron energy spectra of ⁵ / He

Results of Γ n / Γ p

systematic error :
 neutron efficiency(8%) + proton (6%)

Summary

Experiments at J-PARC (Decay)

1. Lifetime of heavy hypernuclei ? (J-PARC)

2. NMWD of ${}^4_{\Lambda}$ He and ${}^4_{\Lambda}$ H

 $R_{NS} N \Lambda p \rightarrow np \Lambda n \rightarrow nn$

S Spin=0/1

- Test of $\Delta I = 1/2$ rule
- Spin/isospin dependence

 $\Gamma_{nm} \begin{pmatrix} 4 \\ \Lambda \end{pmatrix} = (3R_{n1} + R_{n0} + 2R_{p0}) \times \rho_4 / 6$ $\Gamma_{nm} \begin{pmatrix} 4 \\ \Lambda \end{pmatrix} = (2R_{n0} + 3R_{p1} + R_{p0}) \rho_4 / 6$ $\Gamma_{nm} \begin{pmatrix} 5 \\ \Lambda \end{pmatrix} = (3R_{n1} + R_{n0} + 3R_{p1} + R_{p0}) \rho_5 / 8$

⁴He(K⁻, π ⁰)⁴∧H ⁴He(K⁻, π ⁻)⁴∧He

Required ${}^{4}_{\Lambda}$ He / ${}^{4}_{\Lambda}$ H numbers

Estimation from E462 statistics.... ${}^{5}_{\Lambda}$ He 55K \rightarrow n+p back-to-back~170

To achieve same statistics....

${}^{4}_{\Lambda}$ H production rate

Spare OHPs

target	reaction	Deam	513		
		[GeV/c]	[A]	2002	2003
¹⁰ B	(π ⁻ , K ⁺)	1.05	272	440	
¹⁰ B	(π ⁻ , K ⁺)	1.2	395	460	716

¹⁰B(π⁻,K⁺) 1.05GeV/c

¹⁰B(π⁻,K⁺) 1.2GeV/c

Two-step process and incident momentum dependence

$$\pi^{-}p \rightarrow K^{0}\Lambda$$
; $K^{0}p \rightarrow K^{+}n$
 $\pi^{-}p \rightarrow \pi^{0}n$; $\pi^{0}p \rightarrow K^{+}\Lambda$

$\pi^- p \rightarrow K^0 \Lambda$ $\pi^0 p \rightarrow K^+ \Lambda$	Same kinematics like $n(\pi^+, K^+)\Lambda$ reaction	
$K^0 p \rightarrow K^+ n$	Charge-exchange	
$\pi^- p \rightarrow \pi^0 n$	(Favors ⊿l=0)	

Two-step process: theoretical cross section is maximum at π incident momentum at 1.05GeV/c

(π^-, K^+) reaction: Λ formation mechanism

1. Two-step Process

$$\pi^- p \rightarrow K^0 \Lambda$$
; $K^0 p \rightarrow K^+ n$
 $\pi^- p \rightarrow \pi^0 n$; $\pi^0 p \rightarrow K^+ \Lambda$

2. One-step Process via Σ^- state

Incident π - Σ -stateFormation1.2 GeV/cReal $\Sigma^- p \Leftrightarrow \Lambda n$ conversion1.05GeV/cVirtualMixing of
wavefunction of Σ^-
and

Problems and solutions

- Huge background π° and Compton suppression \rightarrow surrounded by BGO select events from excitation spectrum Small yield Cover large solid angle → solid angle 15% with 14 Ge **Detection efficiency** ~2.5% @1MeV
- ➡ High background rate from beam pions
 → Fast readout electronics

Identify observed γ -rays

I 1482 keV
largest yield
narrow peak → long lifetime →
$${}^{11}_{\Lambda}B(E2:1/2^+ \rightarrow 5/2^+)$$

Millener's prediction
 $\Delta = 0.5 \text{ MeV}$, $S_N = -0.4 \text{ MeV}$, $S_{\Lambda} = -0.01 \text{ MeV}$, $T = 0.03 \text{ MeV}$
 $\Delta E(1/2^+_1 \rightarrow 5/2^+_1)$
 $= \Delta E_{core} - 0.243\Delta + 1.234S_{\Lambda} - 1.090S_N - 1.627T + \Lambda \Sigma$
 $= 1020 \text{ keV}$
Not consistent with experiment
Not consistent with experiment
Not identified yet → ${}^{11}_{\Lambda}B(M1:3/2^+ \rightarrow 1/2^+)$
will be identified

Results

	Present experiment	Szymanski <i>et al.</i> (1991)
$\Gamma_{\rm tot}/\Gamma_{\Lambda}$	0.947 ± 0.037	1.03 ± 0.08
Γ_{π} - / Γ_{Λ}	0.350 ± 0.017	0.44 ± 0.11
$\Gamma_{\rm nm}/\Gamma_{\Lambda}$	0.400 ± 0.023	0.41 ± 0.14

- $\Gamma_{\pi 0} / \Gamma_{\pi} ({}^{5}_{\Lambda} \text{He}) \equiv \Gamma_{\pi 0} / \Gamma_{\pi} (\Lambda) = 0.560 \pm 0.011$
- $\Gamma_{\rm nm} \equiv \Gamma_{\rm tot} \Gamma_{\pi} \Gamma_{\pi 0}$
- Statistical error only

<u> π^{-} decay width</u>

Significantly larger α - Λ overlap than YNG potential is indicated

New potential is required

Summary

- □ π- branching ratio and lifetime of ${}^{5}_{\Lambda}$ He is precisely measured.
- **D** $\Gamma_{\pi} \Gamma_{\Lambda}(^{5}\Lambda He) = 0.350 \pm 0.017$
- $\Box \Gamma_{nm}/\Gamma_{\Lambda}({}^{5}_{\Lambda}He) = 0.400 \pm 0.023$
- **\square** New α - Λ potential must be considered.