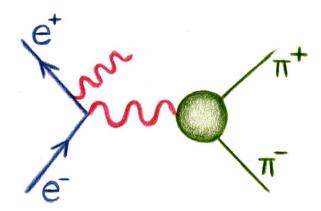

Measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

at DA PNE with the radiative return

Stefan E. Müller Institut für Exp. Kernphysik, Universität Karlsruhe

(for the KLOE collaboration)

Workshop on


e⁺e⁻ in the 1-2 GeV range

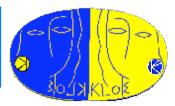
Alghero, 10.-13. September 2003

$\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with ISR:

Particle factories have the opportunity to measure the cross section $\sigma(e^+e^- \to hadrons)$ as a function of the hadronic c.m.s energy M $^2_{hadrons}$ by using the <u>radiative return</u>.

$$M^{2}_{hadr} \frac{d\sigma(e^{+} e^{-} \rightarrow hadrons + \gamma)}{dM^{2}_{hadrons}} = \sigma(e^{+} e^{-} \rightarrow hadrons) H(M^{2}_{hadr}, \cos\theta_{\gamma min})$$

This method is a **complementary approach** to the standard energy scan.


It requires precise calculations of the radiator H.

→ EVA + Phokhara MC Generator

(S. Binner, J.H. Kühn, K. Melnikov, Phys. Lett. B 459, 1999)

(H. Czyz, A. Grzelinska, J.H. Kühn, G. Rodrigo, hep-ph/0308312)

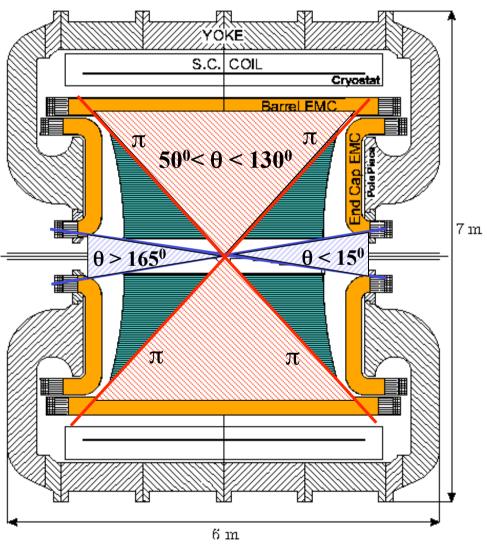
Signal selection:

Pion tracks are measured at angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

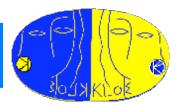
Photons are required to be within $\theta_{\gamma} < 15^{\circ}$ or $\theta_{\gamma} > 165^{\circ}$

<u>Untagged</u> measurement in which we cut on the direction of the missing momentum

$$\vec{p}_{\gamma} = -\vec{p}_{\text{miss}} = -(\vec{p}_+ + \vec{p}_-)$$

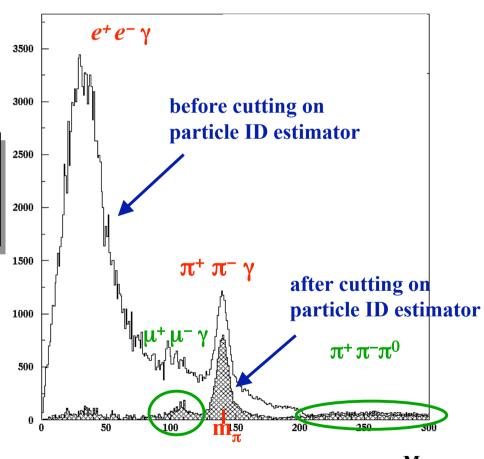

The choice of this kinematical region was motivated by:

- small relative contribution of FSR
- reduced background contamination:


•
$$e^+e^- \rightarrow e^+e^-\gamma$$

•
$$e^+e^- \rightarrow \mu^+\mu^- \gamma$$

•
$$e^+e^- \rightarrow \phi \rightarrow \pi^+\pi^-\pi^0$$

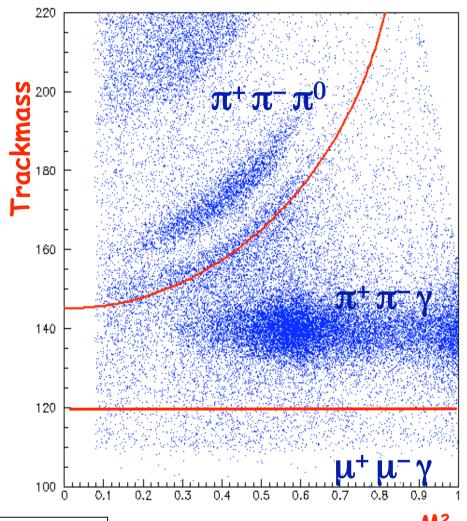

Background rejection:

To reduce Bhabha contamination, a π -e-separation is performed using a particle ID estimator based on:

- TOF of charged clusters in EMC
- Shape and energy deposition of the cluster

The event is selected if one of the charged tracks is identified to be a pion.

Background rejection:



The signal is further selected by performing a cut in the kinetical variable **trackmass** in order to reduce $\pi^+\pi^-\pi^0$ background

 $μ^+μ^-\gamma$ background

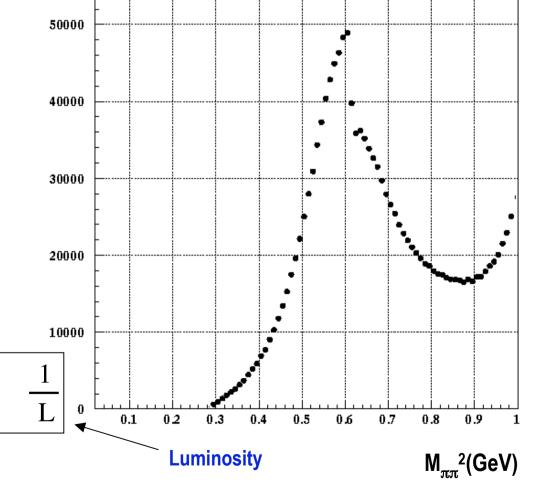
($M_{track} \approx 105 \text{ MeV}$) is
rejected by a cut on $M_{track} = 120 \text{ MeV}$

The trackmass is the particle mass for the two tracks obtained by using the 4-momentum-conservation and the assumption that both particles have the same mass M_{trk} :

$$q_{\gamma}^{2} = \left(M_{\phi} - \sqrt{\vec{p}_{1}^{2} + M_{trk}^{2}} - \sqrt{\vec{p}_{2}^{2} + M_{trk}^{2}}\right)^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2} = 0$$

$M_{\pi\pi}^2$ - Spectrum:

1548036 events


140 pb-1 of 2001 data were analyzed according to the items discussed.

After selection: 1 500 000 events (11000 evts/pb-1)

statistical error/bin < 1%

for $M_{\pi\pi}^2 > 0.45 \text{ GeV}^2$

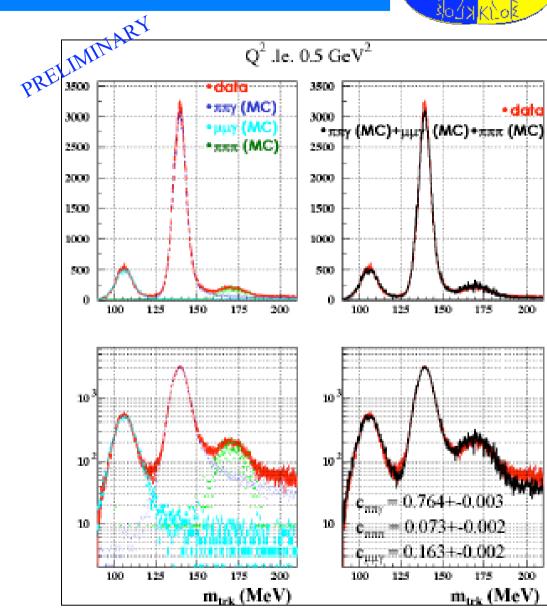
Signal

 $N_i/0.01GeV^2$

Selection efficiency

Background

 $oldsymbol{arepsilon}_{Select.}$


Acceptance: $\theta_{\pi\pi} < 15^{\circ} (\theta_{\pi\pi} > 165^{\circ}), 50^{\circ} < \theta_{\pi} < 130^{\circ}, E_{\Sigma} > 10 \text{ MeV}$

Background subtraction:

Remaining contaminations from $\pi^+\pi^-\pi^0$ and $\mu\mu\gamma$ are measured by fitting the shape of signal and background in the trackmass distribution for different bins of $M_{\pi\pi}^{-2}$.

The estimated number of background events is then subtracted from the spectrum.

Luminosity:

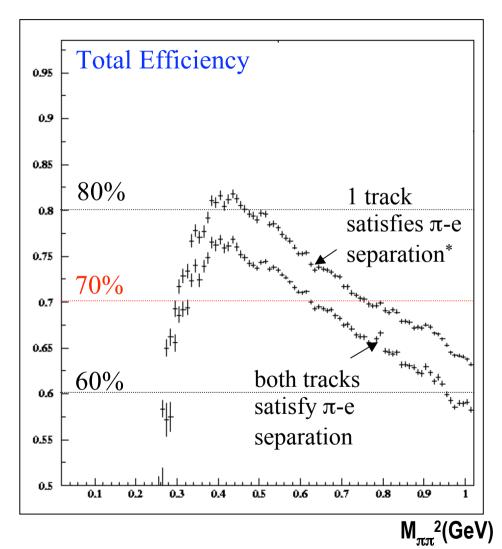
- Luminosity measured with Large Angle Bhabhas: $55^{\circ} < \theta_e < 135^{\circ}$
- 2 independent generators used for radiative corrections:
 - BABAYAGA (Pavia group): $\sigma_{\text{eff}} = (428.8 \pm 0.3_{\text{stat}}) \text{ nb}$
 - BHAGENF (Berends modified): $\sigma_{\text{eff}} = (428.5 \pm 0.3_{\text{stat}}) \text{ nb}$
- Systematics from generator claimed to be 0.5%
- Experimental systematic error determined by comparing data and MC angular and momentum distributions

Systematics on Luminosity	
Theory	0.5 %
Acceptance	0.3 %
Background (ππγ+μμγ)	0.1 %
Trigger+Track+Clustering	0.2 %
Knowledge of √s run-by-run	0.1 %
TOTAL 0.5% theory $\oplus 0.4\%$ exp = 0.6 %	

Efficiencies:

Trigger

including Cosmic Veto Eff.


Reconstr. Filter

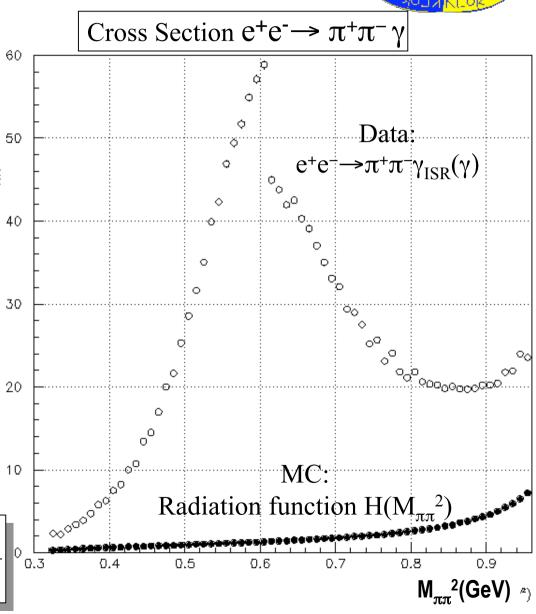
Tracking / Vertex

π-e separation

Trackmass

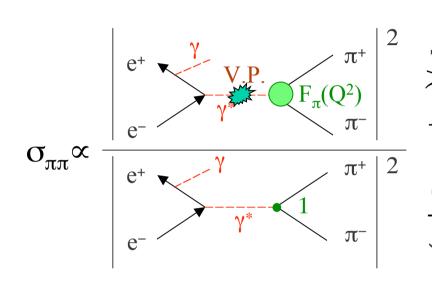
blue = estimated from data and/or indep. control samples $\pi^+\pi^-\pi^0$, $\pi^+\pi^-$ Kinematics simulated by MC **red** = estimated from MC and compared with data

used in this analysis

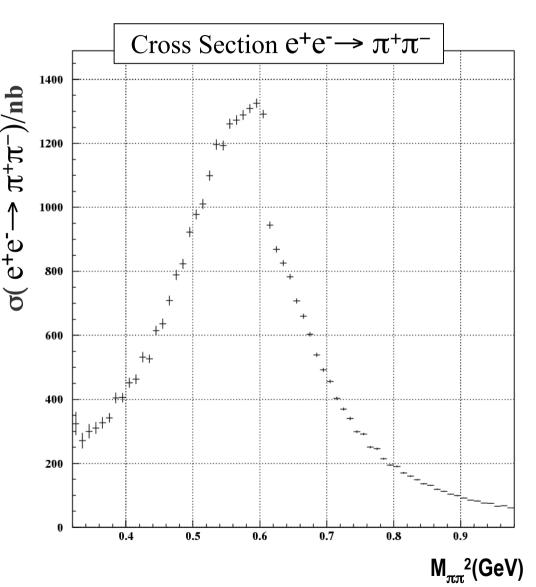

$\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$:

SOJN KILOK

After subtracting the residual background, correcting for efficiencies, dividing for luminsity and unfolding the detector resolution, we arrive to $\sigma(e^+e^-\to\pi^+\pi^-) \text{ in bins of } \mathbf{M}_{\pi\pi}^{2}$

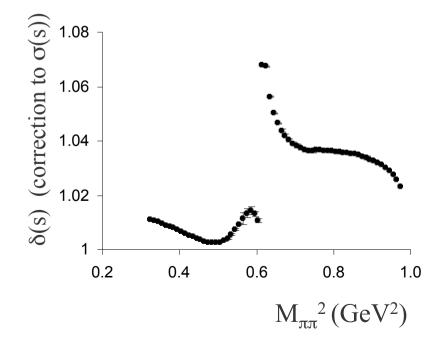

To get the cross section for $e^+e^- \rightarrow \pi^+\pi^-$ we divide the $\pi^+\pi^-\gamma$ cross section by the cross section $\pi^+\pi^-\gamma$ for "pointlike" pions which is obtained technically from the MC generator by setting $F_{\pi} = 1$:

$$\left|\sigma_{\pi\pi} \propto \left| F_{\pi}(M_{\pi\pi}^2) \right|^2 = \frac{d\sigma_{\pi\pi\gamma}(M_{\pi\pi}^2)}{d\sigma_{\pi\pi\gamma,F_{\pi}=1}(M_{\pi\pi}^2)}$$



$\sigma(e^+e^- \rightarrow \pi^+\pi^-)$:

After dividing by the radiation function $H(M_{\pi\pi}^2)$, one gets the cross section $\sigma(e^+e^-\to \pi^+\pi^-)$.

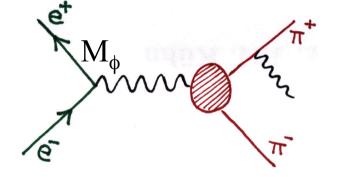


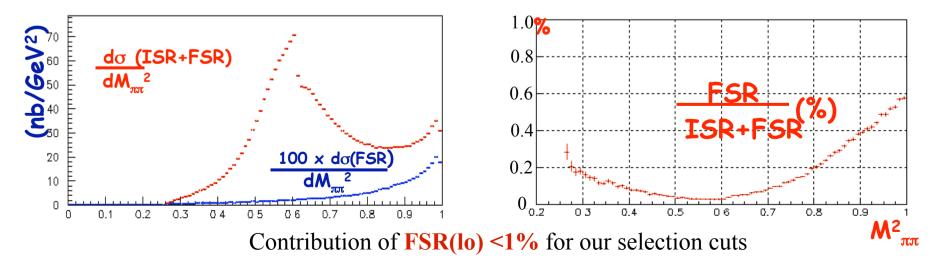
Rad. corrections: Vac. pol.



The "bare cross section" has to be used for the evaluation of the hadronic contribution to a_μ in the dispersion integral , i.e. the cross section has to be divided for the running of the fine structure constant α

$$\sigma(s) \propto \alpha^{2}(s) = \left(\frac{\alpha_{0}}{1 - \Delta\alpha_{lep}(s) - \Delta\alpha_{had}(s)}\right)^{2} \equiv \delta(s) \cdot \alpha_{0}^{2} \propto \sigma_{bare}(s)$$

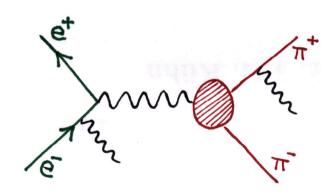

Rad. corrections: FSR (LO)


The cross section has to be corrected with respect to Final State Radiation (FSR).

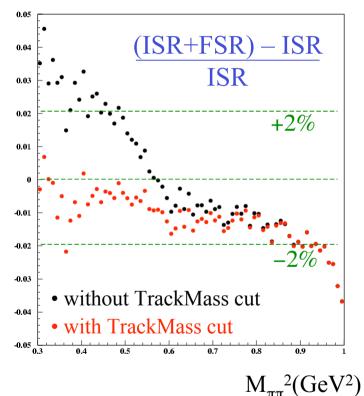
At LO final state radiation, there is no initial state radiation and the e⁺ and the e⁻

collide at the energy M_{ϕ} :

This process has been studied with the **EVA** MC program:

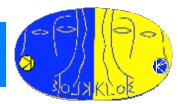


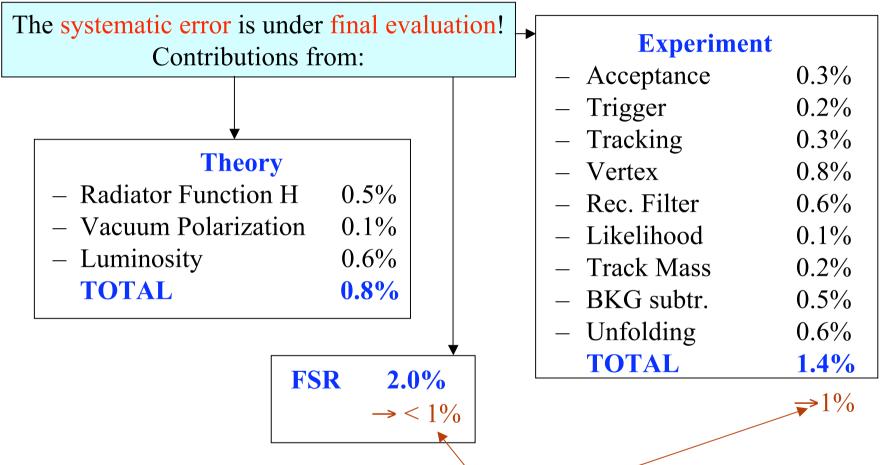
Rad. corr.: FSR (LO+NLO)



Just recently we got a new version of Phokhara which also simulates events with the presence of

1 ISR- and 1 FSR-photon:




A preliminary check shows that the FSR contribution is at most 1-2%.

As of now, we *do not* apply any correction for FSR and add a contribution of 2% to the systematic error

Systematic error:

Systematic error can be reduced to in a short time scale

Conclusions:

- Using initial state radiation as a means to measure the cross section for $e^+e^- \rightarrow \pi^+\pi^-$ from threshold to the full collider energy has been proven very effective
- Analysis almost finished: Final checks, especially on Final State Radiation Correction
- Next Steps:
 - publish final results
 - study events at large photon angles to access lower $M_{\pi\pi}^{2}$ regions
 - use $\mu\mu\gamma$ events for cross checking vacuum polarisation, FSR and additional ISR effects