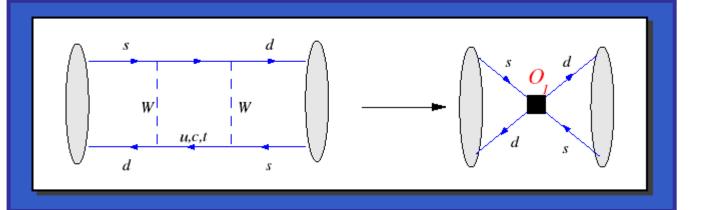
LATTICE QCD AND KAON PHYSICS

Vittorio Lubicz

- K K Mixing: ε_K and B_K
- $K \rightarrow \pi \pi$: $\Delta I = 1/2$ and ϵ'/ϵ
- $K \rightarrow \pi lv$: Measurement of $sin\theta_c$
- $K_L \rightarrow \pi^0 e^+ e^-$: FCNC Kaon Rare Decays

Workshop on e+ e- in the 1-2 GeV range: Physics and Accelerator Prospects ICFA Mini-workshop - Working Group on High Luminosity e+e- Colliders 10-13 September 2003, Alghero (SS), Italy

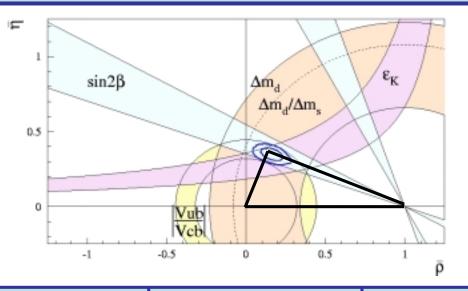

KAON PHYSICS: A REMARKABLE HISTORY

- 1949: Powell et al., DISCOVERY OF K MESONS
 "Strange" particles. t_{Coll}≈10⁻²³ s (Strong), t_{Dec}≈10⁻¹⁰ s (Weak)
- 1956: Lee, Yang, PARITY VIOLATION θ -T puzzle: $\theta^+ \rightarrow \pi^+ \pi^0$, $T^+ \rightarrow \pi^+ \pi^- \pi^-$
- 1963: Cabibbo, UNIVERSALITY OF WEAK INTERACTIONS $\Gamma(K \rightarrow \mu v) / \Gamma(\pi \rightarrow \mu v)$, $\Gamma(K \rightarrow \pi l v) / \Gamma(\pi \rightarrow \pi l v)$
- 1964: Cronin, Fitch et al., CP VIOLATION K→ππ
 → 1972: Kobayashi, Maskawa
- 1970: Glashow, Iliopoulos, Maiani, GIM & CHARM PREDICTION Suppression of $K \rightarrow \mu + \mu^-$, $K \rightarrow \pi l^+ l^-$. Estimate of m_c from Δm_K

$K - \overline{K}$ Mixing: ϵ_{K} and B_{K}

$$K_{L} \sim (K^{0} - \overline{K}^{0}) + \varepsilon_{\mathbf{K}}(K^{0} + \overline{K}^{0})$$

The Effective ∆S=2 Hamiltonian



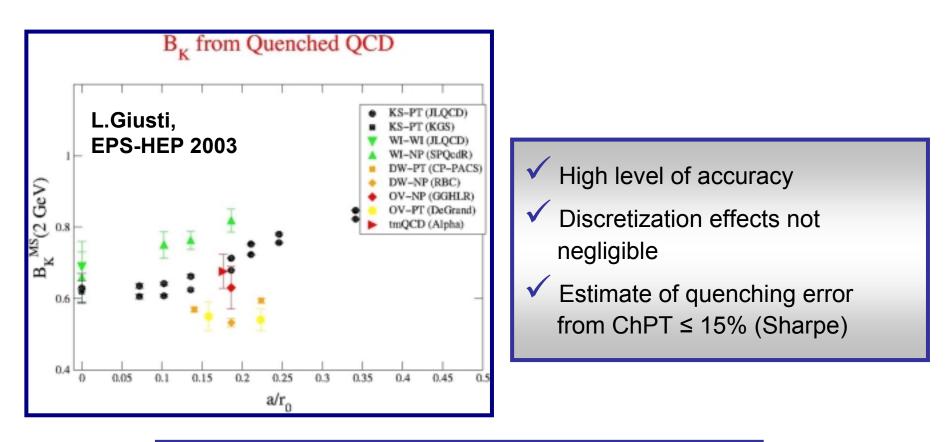
$$\varepsilon_K \sim \langle \bar{K}^0 | \mathcal{H}_{\text{eff}}^{\Delta S=2} | K^0 \rangle = C(\mu) \cdot \langle \bar{K}^0 | \overleftarrow{\bar{s}\gamma_\mu (1-\gamma_5)d} \, \overline{\bar{s}\gamma_\mu (1-\gamma_5)d} \, | K^0 \rangle$$

$$\langle ar{K}^{0} | Q(\mu) | K^{0}
angle = rac{8}{3} f_{K}^{2} m_{K}^{2} rac{B_{K}(\mu)}{B_{K}(\mu)}$$

$$arepsilon_{K}^{ ext{exp.}} = (2.280 \pm 0.013) \times 10^{-3} e^{i\pi/4}$$

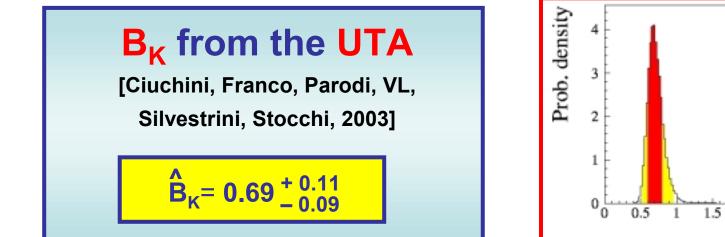
B_K and the Unitarity Triangle Analysis

(b→u)/(b→c)	$\overline{\rho}^2 + \overline{\eta}^2$
ε _κ	<u>η</u> [(1–ρ) + P]
∆m _d	(1– ρ) ² + η ²
$\Delta m_d / \Delta m_s$	(1–ρ̄) ² + η̄ ²
Α(J /ψ K _s)	sin(<mark>2β</mark>)


 $\overline{\Lambda}$, λ_1 , f_+ ,...

Bĸ

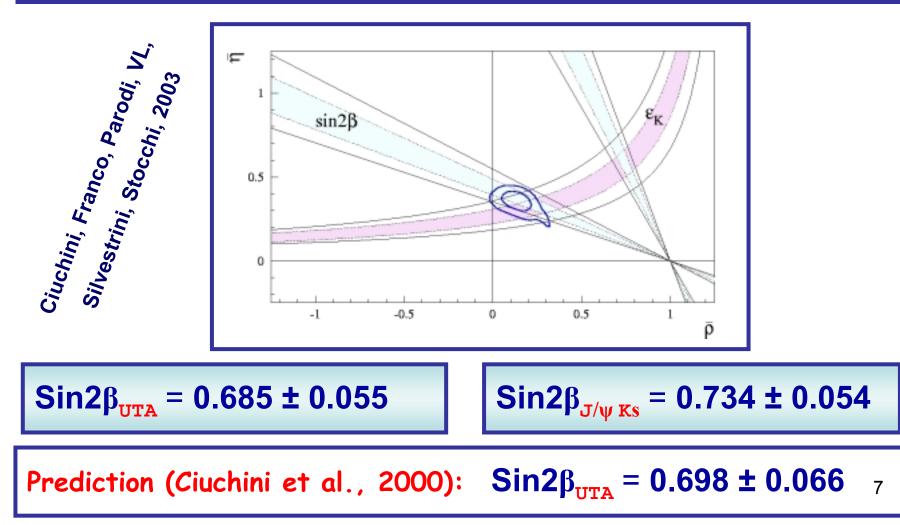
 $f_B^2 B_B$


4

Lattice Results for **B**_K

Quench. Appr. \hat{B}_{K} = 0.87 ± 0.06 ± 0.13 [D. Becirevic, Plenary talk @ LATT03]

Comparison with Other Results

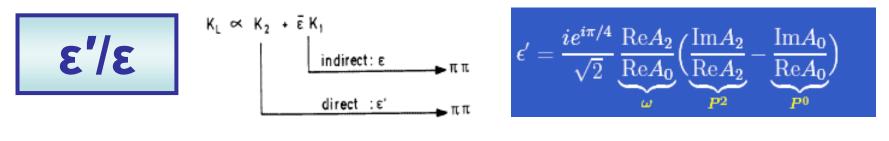


LATTICE PREDICTION (!) $\hat{B}_{\kappa} = 0.90 \pm 0.20$

[Gavela et al., 1987]

THE CKM MECHANISM OF CP VIOLATION

3 FAMILIES -> - Only 1 phase - Angles from Sides



$K \rightarrow \pi \pi$: $\Delta I=1/2$ and ϵ'/ϵ

$$\begin{array}{rcl} \mathcal{A}(K^+ \to \pi^+ \pi^0) &=& \sqrt{3/2} A_2 e^{i\delta_2} \\ \mathcal{A}(K^0 \to \pi^+ \pi^-) &=& \sqrt{2/3} A_0 e^{i\delta_0} + \sqrt{1/3} A_2 e^{i\delta_2} \\ \mathcal{A}(K^0 \to \pi^0 \pi^0) &=& \sqrt{2/3} A_0 e^{i\delta_0} + \sqrt{4/3} A_2 e^{i\delta_2} \end{array}$$

$$(1/\omega)^{\text{exp}} \approx 22 \qquad 1/\omega = \frac{\text{Re}A_0}{\text{Re}A_2}$$

Exp. well established THEORY ??

 $\varepsilon'/\varepsilon = (16.6 \pm 1.6) \times 10^{-4}$

NA48 + KTEV (KLOE would be welcome) THEORY ?? 8

The ΔS=1 Effective Hamiltonian

$$\mathbf{x}_{\mathbf{G}} = \mathbf{x}_{\mathbf{G}} \mathbf{$$

$$\mathcal{H}_{\text{eff}}^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_i C_i(\mu) Q_i(\mu)$$

$$Q_{1} = (\overline{s}_{\alpha}u_{\beta})_{V-A} (\overline{u}_{\beta}d_{\alpha})_{V-A}$$

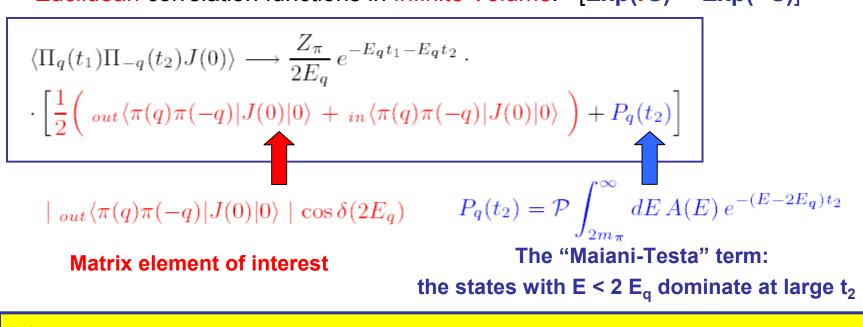
$$Q_{2} = (\overline{s}u)_{V-A} (\overline{u}d)_{V-A}$$

$$Q_{3,5} = (\overline{s}d)_{V-A} \sum_{q} (\overline{q}q)_{V\mp A}$$

$$Q_{4,6} = (\overline{s}_{\alpha}d_{\beta})_{V-A} \sum_{q} (\overline{q}_{\beta}q_{\alpha})_{V\mp A}$$

$$Q_{7,9} = \frac{3}{2} (\overline{s}d)_{V-A} \sum_{q} e_{q} (\overline{q}q)_{V\pm A}$$

$$Q_{8,10} = \frac{3}{2} (\overline{s}_{\alpha}d_{\beta})_{V-A} \sum_{q} e_{q} (\overline{q}_{\beta}q_{\alpha})_{V\pm A}$$


C_i(μ): Short distance dynamics NLO: Ciuchini et al., Buras et al., 1993

 $\langle \pi \pi | Q_i(\mu) | K \rangle$. Non-perturbative physics A MAJOR CHALLENGE FOR LATTICE CALCULATIONS:

$K \rightarrow \pi \pi$: THE *INFRARED* PROBLEM

1) Maiani, Testa The NO-GO Theorem, 1990

Euclidean correlation functions in Infinite Volume: [Exp(iS)→ Exp(-S)]

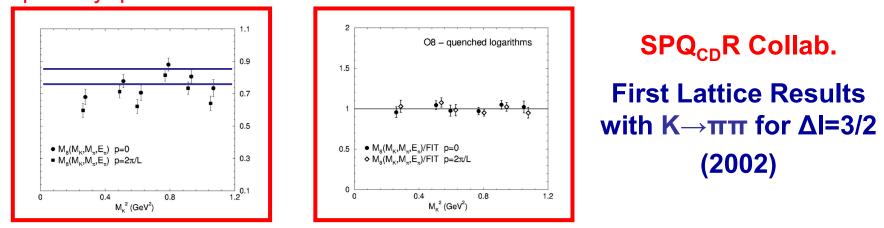
2) Lellouch, Luscher, 2000

Correlation functions in Finite Volume

- In a finite volume the Maiani-Testa term is a discrete sum with few (1-3) dominant states. These contributions may be controlled by studying the time dependence
- Finite volume matrix elements are related to the physical ones:

For W_{2π}= m_K:
$$|\langle \pi \pi | H_W(0) | K \rangle|^2 = F_{LL} |_V \langle \pi \pi | H_W(0) | K \rangle |^2 + \mathcal{O}(e^{-mL})$$

Universal "Lellouch-Luscher" Factor

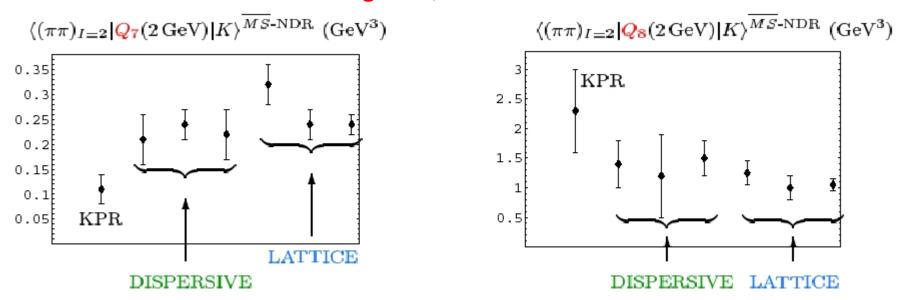

- The phase-shift δ can be computed from $W_{2\pi}$ in a finite volume
- <u>THE PROBLEM IS SOLVED IN PRINCIPLE. BUT...</u> the condition $W_{2\pi}=m_K$ requires L \approx 5-6 fm which is 3-4 times larger than present lattice sizes

3) Lin, Martinelli, Sachrajda, Testa, 2001

• The LL- formula is extended to the un-physical case $W_{2\pi} \neq m_{K}$. The unphysical matrix elements, computable on the lattice, can be related to the physical ones by using chiral perturbation theory

4) Lin, Martinelli, Pallante, Sachrajda, Villadoro, 2002

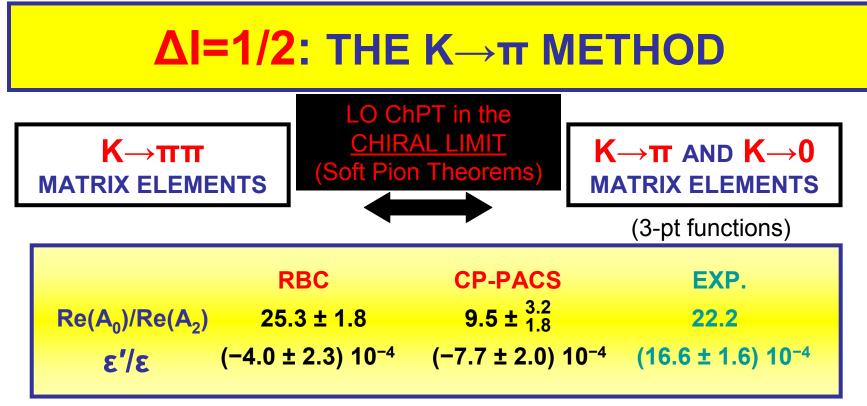
• Complete NLO ChPT calculation of the $K \rightarrow \pi\pi$ matrix elements with arbitrary momenta and masses in infinite and finite volume, in full, quenched and partially quenched QCD


... but the $\Delta I = 1/2$ is a more difficult case

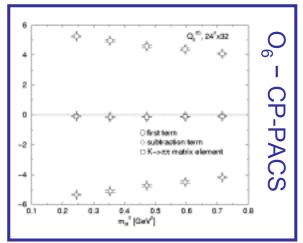
- In the quenched and partially quenched cases unitarity is violated:
- FSI are not universal (depend on the operators)
- The LL-formula does not hold anymore

The time dependence of correlation functions is not universal (depend on the operators)

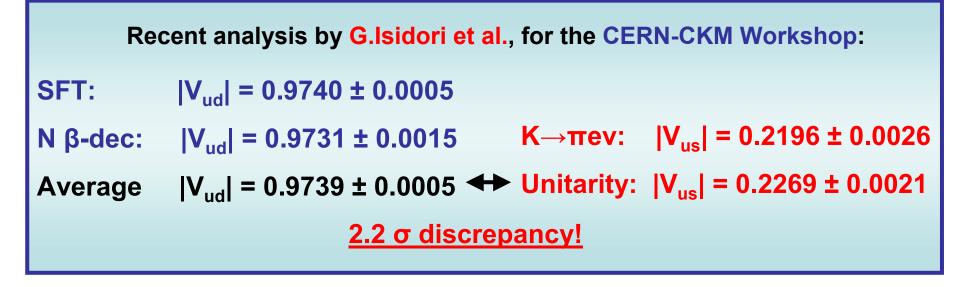
ΔI=3/2: COMPARISONS WITH OTHER APPROACHES (ChPT, 1/N, Disp.Rels.)


From V. Cirigliano, EPS-HEP 2003

KPR (1/N): Knecht, Peris, de Rafael


DISPERSIVE: - Narison; - Bijnens, Gamiz, Prades; - Cirigliano, Donoghue, Golowich, Maltman

LATTICE: - RBC; - CP-PACS; - SPQ_{CD}R


SYSTEMATIC ERRORS:

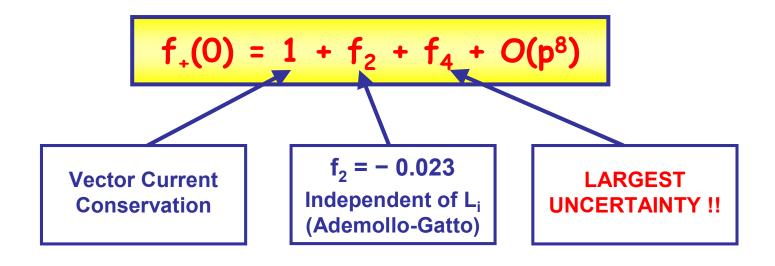
- Approximate Chiral Symmetry
- Quenched Approximation

V_{us} FROM K→πIv DECAYS

CKM Unitarity:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

(From semileptonic hyperon decays: $|V_{us}| = 0.2250 \pm 0.0027$ [Cabibbo et al., July 2003])

Examine KI3 decays


EXPERIMENTS:

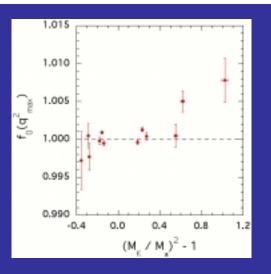
- DISCREPANCY OF E685 RESULT.
- POOR CONSISTENCY (1.8 σ) BETWEEN K⁺₁₃ AND K⁰₁₃ MODES.

NEEDS FOR NEW MEASUREMENTS: KLOE !!

THEORY:

THE CRUCIAL INGREDIENT IS THE FORM FACTOR AT ZERO MOMENTUM TRANSFER: $f_{+}(0)$

<u>"Standard" estimate</u>: Leutwyler, Roos (1984) (QUARK MODEL) $f_4 = -0.016 \pm 0.008$


NEW: ChPT, Complete NNLO Calculation Post, Schilcher (2001), Bijnens, Talavera (2003)

$$f_{4} = 0.014(6) - \frac{8}{F_{\pi}^{4}} (C_{12} + C_{34}) (m_{K}^{2} - m_{\pi}^{2})^{2}$$

= 0.014(6) - 0.056 $\left[\frac{C_{12} + C_{34}}{10^{-5}}\right] \neq \approx 0.5$ Leutwyler & Roos
 ≈ 1.0 consistent with unitarity

A LATTICE CALCULATION IS IN PROGRESS

[SPQ_{CD}R + Isidori + ...]

- Very challenging: 1% of accuracy required
- Use appropriate ratios of correlation functions

RARE KAON DECAYS

THE CKM MECHANISM HAS BEEN ONLY TESTED SO FAR FOR: - TREE-LEVEL CHARGED CURRENT - ΔF=2 LOOP INDUCED PROCESSES

BUT:

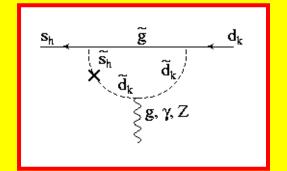
 $\Delta S=1$ (AND $\Delta B=1$) FCNC MAY RECEIVE IMPORTANT CONTRIBUTIONS FROM NEW PHYSICS

THE "GOLDEN MODE" (FREE FROM HADRONIC PARAMETERS) IS $K \rightarrow \pi v \overline{v}$. FOR OTHER PROCESSES LATTICE CALCULATIONS ARE NEEDED.

$$K_L \rightarrow \pi^0 e^+ e^-$$

NEW PHYSICS CONSTRAINTS FROM THE LATTICE

KTeV (2003) $B(K_{L} \rightarrow \pi^{0}e^{+}e^{-}) < 2.8 \times 10^{-10}$ at 90% C.L.


STANDARD MODEL $B(K_{L} \rightarrow \pi^{0}e^{+}e^{-}) = (3.2 + 1.2 - 0.8) \times 10^{-11}$ PREDICTION: [Buchalla, D'Ambrosio, Isidori 2003]

CONSTRAINTS ON SUSY MODELS:

First lattice calculation of the electromagnetic operator amplitude:

<π⁰|sσ_{µv}F^{µv}d |K⁰>

[Becirevic, VL, Martinelli, Mescia 2001]

KAON PHYSICS HAS REPRESENTED SO FAR A HUGE SOURCE OF **INFORMATION FOR PARTICLE PHYSICS. NEW IMPORTANT INSIGHTS ARE EXPECTED IN THE FUTURE. IT IS CERTAINLY WORTH TO BE STUDIED !!**