Precision measurements of the Nucleon Form Factors in the time-like region with FINUDA at DAFNE2

Alessandra Filippi, INFN Torino

Workshop on e⁺e⁻ in the 1-2 GeV region Alghero, 12.09.03

Outline of the talk

- Open problems in e^+e^- annihilation around $\sqrt{s} = 2$ GeV (close to NN threshold)
 - Measurements of nucleon time-like form factors

- Study of <u>feasibility</u> with FINUDA
 - $e^+e^- \rightarrow NN$ annihilation and form factors evaluations
 - Basic generalities of the experimental setup
 - Apparatus' changes & requirements
 - Expected topologies and detection efficiencies, expected yields per day
 - Backgrounds

Total e⁺e⁻ cross section at ≈2 GeV

 Beyond the φ peak the total cross section is about hundreds of nb:

- e⁺e⁻→nn ≈ 1 nb
- e⁺e⁻→pp ≈ <1 nb
- $e^+e^- \rightarrow multihadrons \approx 40-70 \text{ nb}$
- $e^+e^- \rightarrow \gamma \gamma \approx 3 \div 4 \text{ nb}$
- $e^+e^- \rightarrow \mu^+\mu^- \approx 20 \text{ nb}$
- e⁺e⁻→e⁺e⁻ ≈ 20 nb

Measurements of the nucleon form factors in the time-like region

Based on total and differential cross sections:

$$\sigma = \frac{4\pi\alpha^2\beta}{3s} \left[\left| G_M(s) \right|^2 + \frac{2M_N^2}{s} \left| G_E(s) \right|^2 \right]$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^{2}\beta}{4s} \left[\left| G_{M}(s) \right|^{2} \left(1 + \cos^{2} \vartheta \right) + \frac{4M_{N}^{2}}{s} \left| G_{E}(s) \right|^{2} \sin^{2} \vartheta \right]$$

- $G_E = F_1 + (s/4M_N^2)F_2 / G_M = F_1 + F_2$ (Sachs FF)
- $G_E vs G_M$ can be discriminated via the angular distributions
 - $s >> M^2_N$: only $G_M(s)$ counts
 - $s \approx 4 \text{ M}_{N}^2$ (threshold): $G_E(s) \approx G_M(s)$

 \Rightarrow isotropic distribution

FINUDA present assembly: internal region

- Beam pipe (Be, 0.5 mm thick)
 R_i = 5.39 cm
- TOFino (12 scintillators, 0.2 cm thick)
 - R_i = 5.8 cm
- ISIM (8 modules, 300 μm thick)
 - Distance = 6.3 cm
- Nuclear targets
- OSIM (10 modules, 300 μm thick)
 - Distance = 8.3 cm

FINUDA present assembly: tracking region + external scintillators

- Two series of 8 drift chambers, 6 cm thick each
 - Distance 1st layer ≈ 43 cm
 - Distance 2nd layer ≈ 75 cm
- 6 layers of straw tubes (total thickness ≈16 cm)
 - R_i = 111 cm
- TOFone (72 scintillators, 10 cm thick)
 - R_i = 127 cm
 - Efficiency for low momentum neutrons detection: ≤ 15%
- Fe magnet coil \Rightarrow 1.1 T
 - R_i = 138 cm
- He atmosphere:
 - Total radiation length: 1700 m
 - If filled with air: 304 m

New requirements for FF measurements

 Some converter is needed somewhere!

$$\sigma_{ann}(p_{\bar{n}},A) = \sigma_0(p_{\bar{n}})A^{0.65}$$

 $\sigma_0(p_{\bar{n}}) = a + b/p_{\bar{n}}$

- Criteria for a good converter material:
 - Highest annihilation cross section
 - **Low charged** π absorption
 - **High conversion efficiency for** π^0
 - Amagnetic (if B field is required)

Converter(s) positioning: most convenient placements

- 1st converter beyond OSIM
 - Possibility of pp tracking in the inner region
 - 7 mm thick tube, 20 cm long, R_i=9 cm
 - Thickness corresponding to
 - \approx 4 interaction lengths for 5 MeV/c antineutrons
 - ≈ 1 interaction length for 25 MeV/c antineutrons ($\sqrt{s} = 1879.89$ MeV)
 - 0.5 X₀
 - For 340 MeV/c antineutrons (√s = 2 GeV)

• $\lambda = 5.88 \text{ cm} = 4 \text{ X}_0$

- 2nd converter before the first DC layer
 - 7 mm thick tube:
 - one interaction length for 50 MeV/c antineutrons

n-Nucleus annihilation vertex position inside the apparatus

- 5 MeV/c ns annihilate completely on beam-pipe, TOFino and 1st converter
- 29 MeV/c ns annihilate for the 44% on first converter, 20% on the second one
- 197 MeV/c ns annihilate for the 13% on the first converter, 8% on the second one, 22% on drift chambers, 16% on TOFone, 28% on magnet coil

p-Nucleus annihilation vertex position inside the apparatus

- 300 MeV/c (√s = 1970 MeV) protons/antiprotons range in Cu is
 - $R = 1.88 \text{ g cm}^{-2}$
 - I = 2.1 mm
 - All protons/antiprotons stop at most on first converter
 - Insensitive to the presence of the second converter
 - At nn threshold ($\sqrt{s} = 1879.13$ MeV) the outgoing p/p momentum is ≈ 48 MeV/c:
 - Never spiralize before reaching the beam pipe, not even for B = 1.1 T

Use of magnetic field: pro's and con's

• PRO'S:

- Easier spurious tracks (cosmic rays) rejection
- Helps to confine background (Touscheck, and even Bhabha) events within the first converter
- Track momentum measurement possible
 - Not essential for this kind of physics measurements, only interested in event topology

A field of moderate intensity (0.2 T) seems to be a good compromise solution

• CON'S:

- Iron cannot be used as a converter
- Lower reconstruction efficiency of the annihilation star
 - The higher the field, the more e^+e^- pairs from π^0 conversion are lost
- Less difficulty on the star topology reconstruction
 - Two hits per track are enough
- No perturbations on beam optics

$e^+e^- \rightarrow \bar{n}n$ with FINUDA: typical topologies

Configuration with a single copper converter (7 mm thick, 1 interaction length for 25 MeV/c \overline{n} =0.5X₀), beyond the inner region

√s = 1890 MeV, B = 0.2 T

Tentative events yields/day, e^+e^- \rightarrow \overline{n}n

 $\begin{array}{l} 1 \text{ converter only} \\ L \approx 5 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1} \\ L_{day} \approx 4 \text{ pb}^{-1} \text{; } \sigma_{Ann} \approx 1 \text{ nb} \\ B = 0.2 \text{ T} \end{array}$

Chamber transparency: 85%

√s (MeV)	3	L _{day} (pb-1)	# events	# events w. n coincidence
1879	.31	4	1054	158
1880	.24	4	816	122
1890	.16	4	640	96
1900	.13	4	442	66
1920	.08	4	272	41
1940	.06	4	204	31
2000	.06	4	204	31

$e^+e^- \rightarrow \bar{n}n$ with FINUDA: two converters?

√s = 1900 MeV, B = 0.2 T

Tentative events yields/day, e^+e^- \rightarrow \overline{n}n

 $\begin{array}{l} \mbox{2 converters} \\ \mbox{L} \ \approx \ 5 \times 10^{31} \ cm^{-2} \ s^{-1} \\ \mbox{L}_{day} \ \approx \ 4 \ pb^{-1} \ ; \ \sigma_{Ann} \ \approx \ 1 \ nb \\ \ \ B \ = \ 0.2 \ T \end{array}$

The second converter enhances the number of annihilations (and useful events) from 20 to 60%

Chamber transparency: 85%

√s (MeV)	1st/2nd converter annihilation ratio	3	L _{day} (pb- ¹)	# events	# events w. n coincidence
1879	4.94	.31	4	1265	190
1880	3.39	.24	4	1053	157
1890	1.97	.15	4	966	119
1900	1.81	.13	4	685	102
1920	1.44	.08	4	460	66
1940	1.66	.06	4	326	50
2000	1.56	.06	4	335	51

$e^+e^- \rightarrow \overline{p}p$ with FINUDA: typical topologies

Antiprotons get always stopped in the copper layer

√s = 1890 MeV, B = 0.2 T

Tentative events yields/day, $e^+e^- \rightarrow \overline{p}p$

1 converter only $L \approx 5 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$ $L_{day} \approx 4 \text{ pb}^{-1}; \sigma_{Ann} \approx 1 \text{ nb}$ B = 0.2 TChamber transparency: 85%

√s (MeV)	3	L _{day} (pb-1)	# events
1879	.46	4	1564
1880	.48	4	1632
1890	.51	4	1734
1900	.54	4	1836
1920	.44	4	1496
1940	.40	4	1360
2000	.36	4	1224

How to distinguish $e^+e^- \rightarrow \bar{n}n$ from $e^+e^- \rightarrow \bar{p}p$?

- If all p's stop on beam pipe the event topology for the antinucleon "prong" is the same in the two cases
 - But the proton leaves hits on the tracking devices, and the neutron hits the outer scintillator hodoscope
 - If the reconstructed vertex is on the beam pipe one can assume it's a pp event
 - The probability that a few MeV/c antineutron annihilates in this place is about 9%

Faster p's

- They hit tofino allowing a back-to-back trigger
- If just a hit is left by each track on ISIM or OSIM the p/p tracks may be completely reconstructed
- The p track points as well to the annihilation vertex
 - Higher efficiency
 - Looser criteria to identify the annihilation star

Background I: $e^+e^- \rightarrow \gamma \gamma$

Events with 2 (electron) prongs can fake annihilation stars

√s = 1900 MeV, B = 0.2 T

- Two 7 mm thick Cu converters provide one radiation length
- Events topology is very similar if only two tracks out of the interaction point are required
 - Without magnetic field it's easier to discriminate them since the opening angle of e⁺e⁻ pairs is very tight, and fixed at any beam energy
 - In these conditions the detection efficiency for a $\gamma\gamma$ event is 20-25%, which means about 2000-2500 events that can fake true annihilations, with $L_{day} \approx 4 \text{ pb}^{-1}$ and $\sigma_{\gamma\gamma} \approx 3 \text{ nb}$

Tentative events yields/day, e^+e^- \rightarrow \gamma \gamma

1 converter only $L \approx 5 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$ $L_{day} \approx 4 \text{ pb}^{-1}; \sigma_{\gamma\gamma} \approx 3 \text{ nb}$ B = 0.2 TChamber transparency: 85%

√s (MeV)	3	L _{day} (pb-1)	# events
1879	.23	4	2346
1880	.25	4	2550
1890	.23	4	2346
1900	.19	4	1938
1920	.24	4	2448
1940	.18	4	1836
2000	.22	4	2244

Background II: cosmic ray rejection

- Maximum expected cosmic rays events (OR Tofino):
 - 50 Hz
- To be compared with:
 - $#ev/s = \sigma * L = 1 \text{ nb} * 5 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1} = 5 \times 10^{-2} \text{ Hz}$
- Cosmic rays can give spurious tracks passing through e⁺e⁻→pp annihilation vertex
- With a magnetic field spurious tracks are deviated and don't pass anymore through the apparatus' center

Background II: $e^+e^- \rightarrow e^+e^-$ Bhabha events

Topology very different from an annihilation star

 $\sqrt{s} = 1900 \text{ MeV}, \text{ B} = 0.2 \text{ T}$

 $\sqrt{s} = 2000 \text{ MeV}, B = 0.2 \text{ T}$

Background III: Touscheck events

Confined inside beam pipe and inner region

√s = 1890 MeV, B = 0.2 T

Advantages and drawbacks with FINUDA

- Total cross sections can be measured with fair efficiency
- Some problems for the differential cross sections due to the apparatus' limited acceptance
 - Something to improve the angular coverage needed
- Further checks: possibility to measure the proton and (more difficult, but feasible) the neutron polarization
 - Enough room is available to place suitable polarization filters: carbon converter
 - Method: measure a left/right asymmetry for the emitted nucleon
 - Tool to get the relative phase and infer something more about G_M and G_E, that in the time-like region are complex

Conclusions

- The cross section measurements for both e⁺e⁻→nn and e⁺e⁻→pp seems to be feasible
 - maximum efficiency: 30% close to threshold
 - Most important problem: reduced FINUDA angular acceptance!!
- γγ background rejection strong enough if event reconstruction requires
 - A more-than-two-prong annihilation star
 - A signal on TOFone by a neutron within a definite time gate
- Possibility to reconstruct with a ~20% efficiency multihadronic events like $e^+e^- \rightarrow 4\pi$, $\rightarrow 6\pi$ to search for possibile new structures in formation
- Possibility to perform polarization measurements