Working Group on Flavor Physics

A short summary trying to focus on the shopping list

Fernando Ferroni Roma "La Sapienza" & INFN Roma

Thursday, September 11th Parallel Sessions - Main Room

	Rere Kaon Decays					
09:00	Secretes for K-> pi nu nuber at Hedron Machines	D. Jaffe, BNL				
	Status of KEK-E391a and Future Prospects on KL ⇒p0 nn at KEK	Y. Lim, KÆK				
	Secrobes for KL >00 nn et a F-Factory	F. Bossi, INFN-LNF				
10:30	Coffee Breek					
11:00	KTeV Results on Rare KO Decays	M. Corooren, Rice Univ.				
	NA46 Results on Rere KO Decays	A. Caccucol, CERN				
	KLCE Results on Rare K0 Decays	S. Dell'Agnello, INFN-LNF				
	Discussion					
13:00	Lunch					
	Theoretical Issues in Kaon Physics					
16:30	CP, CPT and Rare Decays	G. D'Ambrosio, INFN-NA				
	Quantum Mechanics and Keon Interferometry	A. Bramon, Univ. Baroolona				
	Lettice QCD and Keen Physics	V. Lubiaz, INFN-Rome3				
	Discussion					
18:00	Coffee Break					
	Charged Kaons and Interferometry					
18:30	Recent Results and Future Perspectives on K+- Decays at Hadron Machines	M. Sozzi, CERN				
	Status and Prospects of KLOE on K+-	L. Passeloogue, INFN-LNF				
	Interferometry at KLOE: Present and Future	A. Di Domenico,				
	,	INFN-Rome1				

The wildest dream

	$b \rightarrow s$	$b \rightarrow d$	$s \rightarrow d$
ΔF=2 box	$\begin{array}{l} \Delta M_{Bs} \\ A_{CP}(B_s {\rightarrow} \psi \phi) \end{array}$	$\begin{array}{c} \Delta M_{Bd} \\ A_{CP}(B_d \!\!\to\!\! \psi K) \end{array}$	$\Delta M_{K}^{},~~\epsilon_{K}^{}$
ΔF=1 4–quark box	$B_d{\to} \phi K, B_d{\to} K\pi, \$	$B_d \rightarrow \pi\pi, B_d \rightarrow \rho\pi,$	ε'/ε, Κ→3π,
gluon penguin	$\begin{array}{l} B_d{\rightarrow} X_s\gamma,\ B_d{\rightarrow} \varphi K,\\ B_d{\rightarrow} K\pi, \end{array}$	$B_d \rightarrow X_d \gamma, B_d \rightarrow \pi \pi,$	$\epsilon'/\epsilon, K_L {\to} \pi^0 l^\dagger l^{},$
γ penguin	u s u s u	$\begin{array}{l} B_d {\rightarrow} X_d l^t \ell , B_d {\rightarrow} X_d \gamma \\ B_d {\rightarrow} \pi \pi , \dots \end{array}$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^{\dagger} l^{\dagger},$
Z ⁰ penguin	$B_d \rightarrow X_s l^t l^t$, $B_s \rightarrow \mu \mu$ $B_d \rightarrow \phi K$, $B_d \rightarrow K \pi$,	$\begin{array}{l} B_d {\rightarrow} X_d l^t \varGamma , B_d {\rightarrow} \mu \mu \\ B_d {\rightarrow} \pi \pi , \end{array}$	$ε'/ε, K_L \rightarrow π^0 l^+ l^-,$ $K \rightarrow πνν, K \rightarrow μμ,$
H ⁰ penguin	$B_s \rightarrow \mu\mu$	$B_d \rightarrow \mu\mu$	$K_{L,S}{ ightarrow}\mu\mu$

Even theory has its limitations decreasing SM contrib.

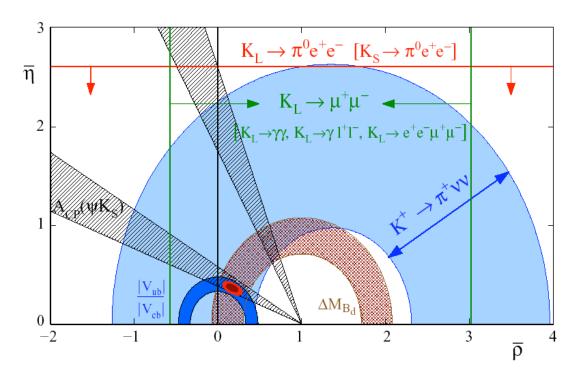
		$b \rightarrow s \ (\sim \lambda^2)$	$b \to d \ (\sim \lambda^3)$	$s \to d \ ({\sim}\lambda^5)$	
	ΔF=2 box	$\begin{array}{l} \Delta M_{Bs} \\ A_{CP}(B_s {\rightarrow} \psi \phi) \end{array}$	ΔM_{Bd} $A_{CP}(B_d \rightarrow \psi K)$	ΔM_K , ϵ_K	
decrea- sing SM contrib.	ΔF=1 4–quark box	$\mathbf{B}_{d} \!\!\to\!\! \phi K, \mathbf{B}_{d} \!\!\to\!\! K \pi, \$	$B_d \rightarrow \pi\pi, B_d \rightarrow \rho\pi,$	ε'/ε, Κ→3π,	
	gluon penguin	$\begin{split} &B_d{\to}X_s\gamma,\ B_d{\to}\phi K,\\ &B_d{\to}K\pi, \ldots \end{split}$	$B_d \rightarrow X_d \gamma$, $B_d \rightarrow \pi \pi$,	$\epsilon^{,/} \epsilon, K_L {\longrightarrow} \pi^0 l^{\dagger} \Gamma, \dots$	
	γ penguin	$\begin{aligned} & B_d {\rightarrow} X_s \mathit{l}^\dagger \mathit{l}^\intercal, B_d {\rightarrow} X_s \gamma \\ & B_d {\rightarrow} \phi K, B_d {\rightarrow} K \pi, \end{aligned}$	$\begin{array}{l} \boldsymbol{B_d} {\to} \boldsymbol{X_d} \boldsymbol{\ell}^{\!\!\!\!\!\top} \boldsymbol{\ell}, \boldsymbol{B_d} {\to} \boldsymbol{X_d} \boldsymbol{\gamma} \\ \boldsymbol{B_d} {\to} \boldsymbol{\pi} \boldsymbol{\pi}, \dots \end{array}$	$\epsilon^{\text{\tiny{?}}}/\epsilon,K_L^{}\!$	
	Z ⁰ penguin	$\begin{aligned} \mathbf{B_d} &\rightarrow \mathbf{X_s} \mathit{l^{\dagger} \mathit{l}^{\dagger}}, \mathbf{B_s} \!\!\rightarrow\!\! \mu \mu \\ \mathbf{B_d} \!\!\rightarrow\!\! \varphi \mathbf{K}, \mathbf{B_d} \!\!\rightarrow\!\! \mathbf{K} \pi, \dots \end{aligned}$	$\begin{array}{l} \boldsymbol{B}_{d} {\to} \boldsymbol{X}_{d} \boldsymbol{I}^{t} \boldsymbol{I}, \boldsymbol{B}_{d} {\to} \boldsymbol{\mu} \boldsymbol{\mu} \\ \boldsymbol{B}_{d} {\to} \boldsymbol{\pi} \boldsymbol{\pi}, \dots \end{array}$	$\begin{array}{l} \epsilon^{\text{1}}/\epsilon,K_{L}{\to}\pi^{0}\textit{l}^{\text{1}}\textit{l},\\ K{\to}\pi\nu\nu,K{\to}\mu\mu, \end{array}$	
	H ⁰ penguin	$B_s \rightarrow \mu\mu$	$B_d \rightarrow \mu\mu$	$K_{L,S}{ ightarrow}\mu\mu$	

Theoretical errors ≤ 10%

And experiments have no less

			decreasing Sivi	CORUED.
		$b \to s \ (\sim \lambda^2)$	$b \to d \ (\sim \lambda^3)$	$s \to d \ (\sim \lambda^5)$
	ΔF=2 box	(ΔM_{Bs}) $A_{CP}(B_s \rightarrow \psi \phi)$	(ΔM_{Bd}) $(A_{CP}(B_d \rightarrow \psi K))$	ΔM_K , ϵ_K
	ΔF=1 4–quark box	$(B_d \rightarrow \phi K) B_d \rightarrow K\pi, \dots$	$B_d \rightarrow \pi\pi, B_d \rightarrow \rho\pi,$	ε'/ε, Κ→3π,
decrea- sing SM contrib.	gluon penguin	$ \begin{array}{c} $	$\boldsymbol{B}_{\boldsymbol{d}} {\rightarrow} \boldsymbol{X}_{\boldsymbol{d}} \boldsymbol{\gamma}, \boldsymbol{B}_{\boldsymbol{d}} {\rightarrow} \boldsymbol{\pi} \boldsymbol{\pi}, $	$\ell^{\circ}/\epsilon,K_L{\to}\pi^0\ell^{\dagger}\!\varGamma,\dots$
	γ penguin	$\underbrace{\begin{bmatrix} B_d \rightarrow X_s \ l \ l \end{bmatrix}}_{ B_d \rightarrow K\pi, \dots} \underbrace{B_d \rightarrow K\pi, \dots}$	$\begin{array}{l} B_d {\to} X_d \mathit{l}^{\!$	$\epsilon^{\flat}/\epsilon,K_L{\longrightarrow}\pi^0\mathit{l}^{\dagger}\!\varGamma,$
	Z ⁰ penguin	$ \begin{array}{c} B_d \rightarrow X_s \ l \ l \end{array} $ $ B_d \rightarrow \phi K $ $ B_d \rightarrow K\pi, $	$\begin{array}{l} \mathbf{B_d} {\rightarrow} \mathbf{X_d} l^t \boldsymbol{\varGamma} , \mathbf{B_d} {\rightarrow} \mu \mu \\ \mathbf{B_d} {\rightarrow} \pi \pi, \dots \end{array}$	$\epsilon'/\epsilon, K_L {\rightarrow} \pi^0 l^{\dagger} \ell, \\ K {\rightarrow} \pi \nu \nu, K {\rightarrow} \mu \mu, \dots$
	H ⁰ penguin	$B_s \rightarrow \mu\mu$	$B_d \rightarrow \mu\mu$	$K_{NS} \rightarrow \mu\mu$

Gino Isidori


 \bigcirc = exp. error $\sim 10\%$

 \bigcirc = exp. error ~ 100%

where are we?

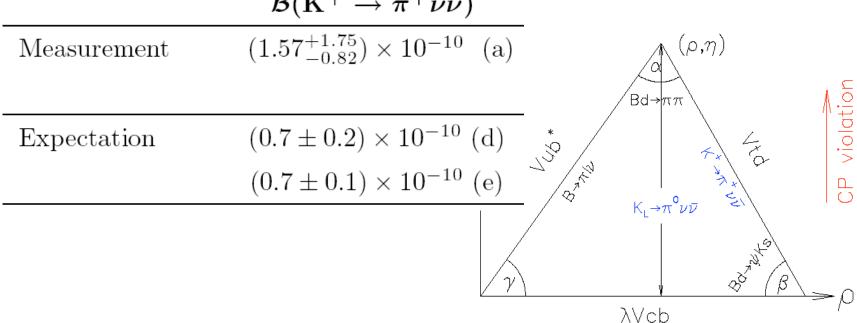
$$K^+ \rightarrow \pi^+ \nu \bar{\nu}$$

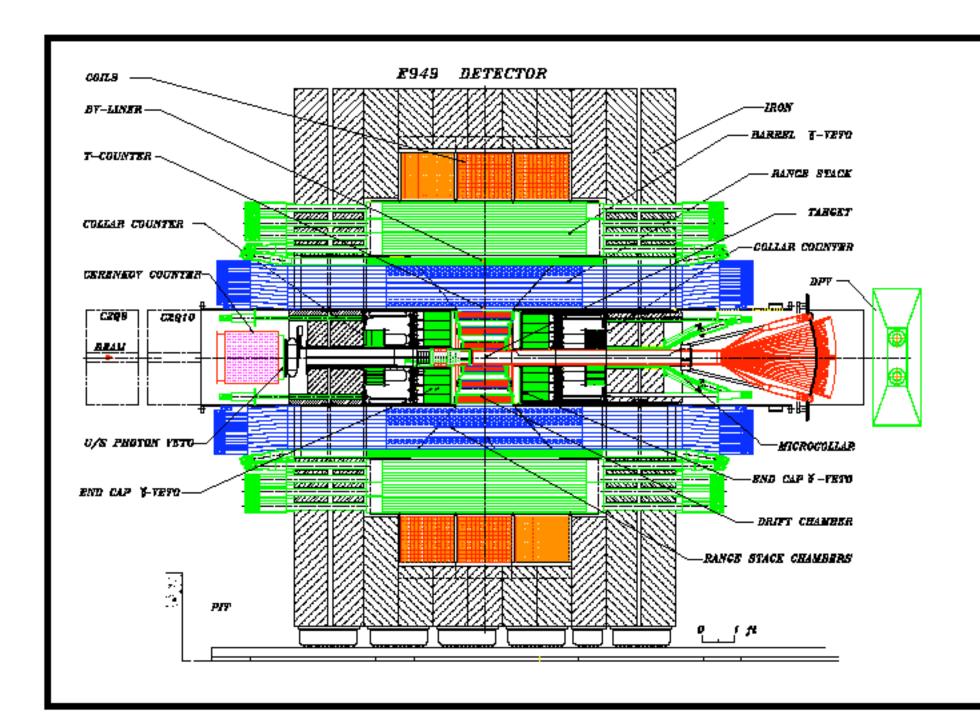
$$K_L \rightarrow \pi^0 \nu \nu$$

$$K_L \to \pi^0 e^+ e^- [K_S \to \pi^0 e^+ e^-]$$

$K \to \pi \nu \bar{\nu}$ at Hadron Machines

David E. Jaffe, BNL


Overview


Mode Results or Goal Expt

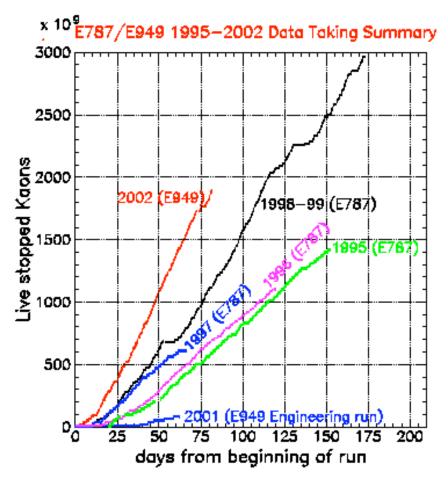
E787 $K^+ \to \pi^+ \nu \bar{\nu}$ Completed. 2 candidates.

 $K^+ \to \pi^+ \nu \bar{\nu}$ 1/5 completed. $\mathcal{O}(10)$ SM events E949

$${\cal B}({
m K}^+ o \pi^+
u ar{
u})$$

E949 status

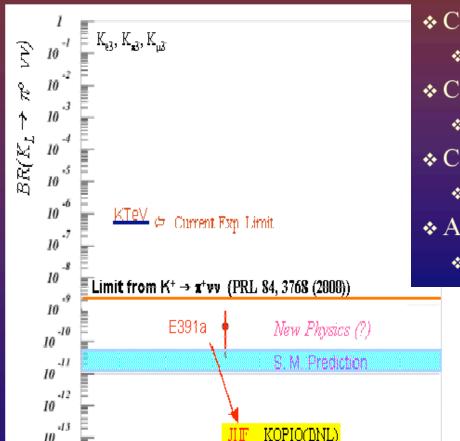
Upgrades to E787:


Improved photon veto hermeticity
Improved tracking resolution
Higher rate and duty factor
2002 run≤ E787 sensitivity,

 $\sim 20\%$ of E949 sensitivity goal of $< 10^{-11}$.

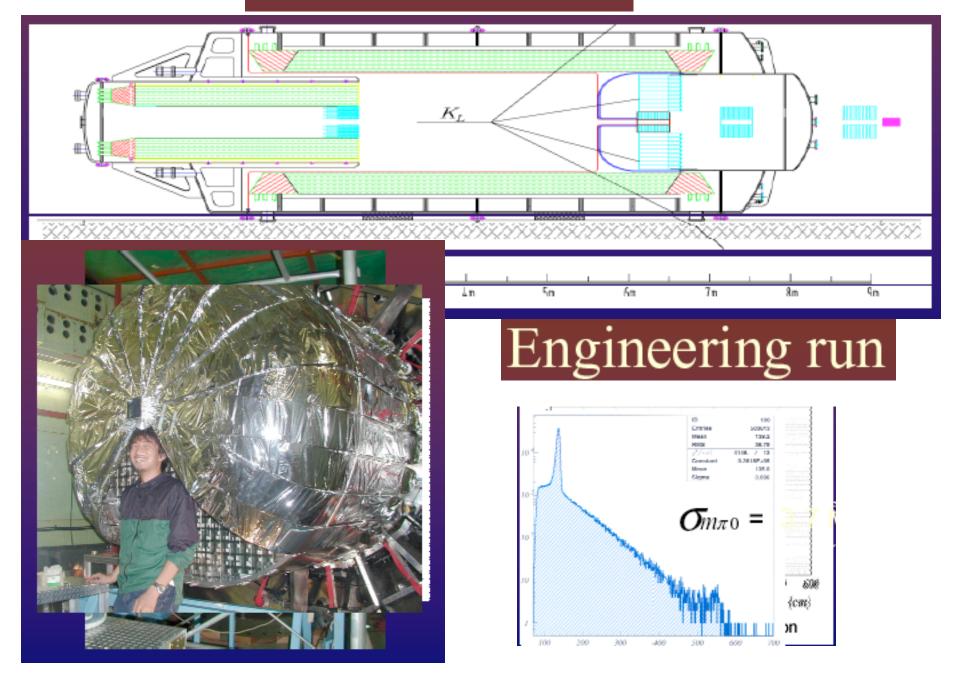
pnn1 results: fall 2003.

Not optimal in 2002:

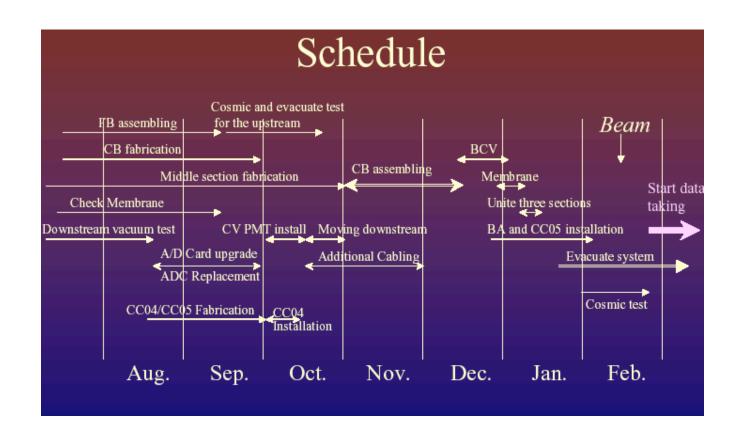

- 1. Spill duty factor.
- 2. Proton beam momentum.
- 3. K/π electrostatic separators.

Clouds on future: cross the fingers

Status of KEK-E391a and Future Prospects on $K_1 \rightarrow \pi^0 v \overline{v}$ at KEK


GeiYoub Lim IPNS, KEK

What shall we do?

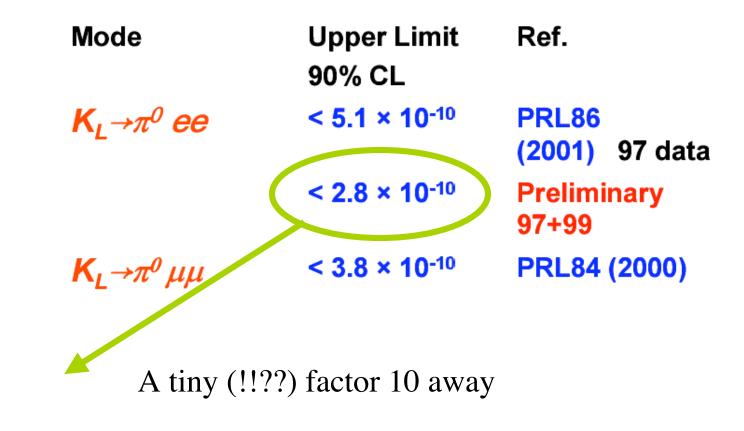

- ♦ Clear single π^0
 - $\star \pi^0 \rightarrow \gamma \gamma$ for high sensitive measurement
- Confirm no other accompanying particle
 - ❖ Perfect veto system
- Complete understand of background
 - ❖ Based on data with help of M.C.
- ❖ A huge amount K_⊥ decays
 - ❖ High intensity K_L beam line, Large acceptance

E391a detector

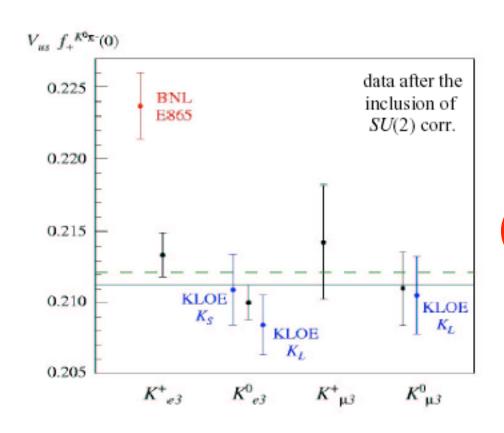
Summary

- ♦ KEK-PS E391a
 - ❖ The first dedicated experiment for the $K_L \rightarrow \pi^0 \nu \nu$
 - Detector is constructed on schedule for Feb. 2004
 - ♦ Aiming to 3X10⁻¹⁰ S.E.S.
 - Significant step to the precise measurement

Rare K_L Decays Recent Results from KTeV

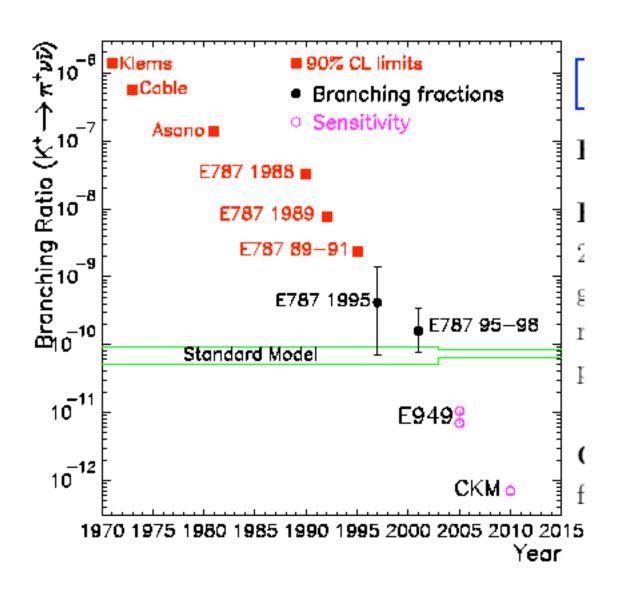

Marj Corcoran

Rice University for the KTeV collaboration

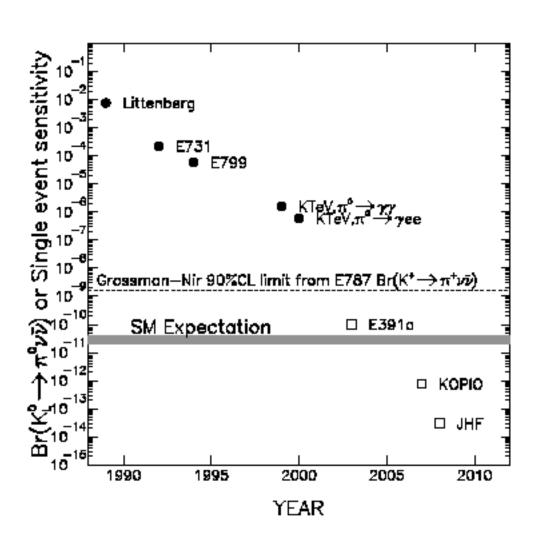

- Best limits on modes with possible direct CP-violating contributions
 - $-~K_L
 ightarrow \pi^0 ee$
 - $|K_L
 ightarrow \pi^{\scriptscriptstyle extsf{U}} \mu \mu$
 - $-K_L
 ightarrow \pi^0
 u
 u$

Experiment: $K_L \rightarrow \pi^0$ ee $(\mu\mu)$

BTW looking at very rare we shall not overlook some duty we have


The present situation is rather confused [large SU(2) breaking= wrong th. corrections, or bad data?]...

...but in a short-time, [with the help of KLOE data on both modes], we shoul be able to clarify it.



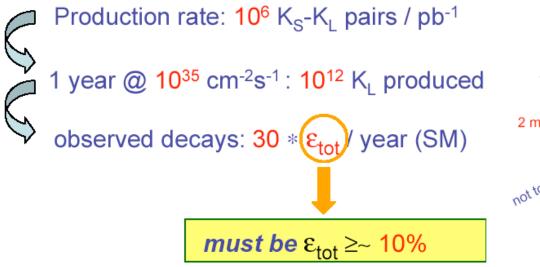
uncertainty dominated by the th. error on f(0)?

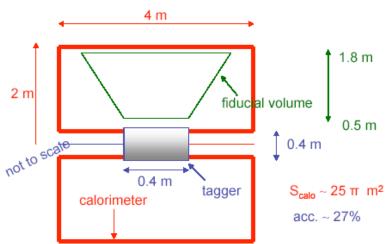
Future (semi-solid or rather liquid) in $K^+ \to \pi^+ \nu \bar{\nu}$

Future (same state of condensation) in $K_L^0 \to \pi^0 \nu \bar{\nu}$

Future (gaseous) in $K_L \rightarrow \pi^0 ee(\mu\mu)$ Perspectives

Admittedly aggressive Road Map


- Detector σ(γγ) ×2
 - Very ambitious, KTeV/NA48 already state of the art
- K_S-K_I time dependent interference ×2
 - Position experiment between 9 and 16 K_S lifetimes (hep-ph/0107046)
- K_S-K_L time independent interference ×3
 - Assume constructive interference (theoretically preferred)
- Data Taking ×5
 - Run in "factory mode". After all E799-II run only for a few months to collect ~7 × 10¹¹ K₁ decays
- Beam intensity ×4
 - Need ~10¹² protons/sec, slowly extracted, high energy, DC
- Tot ~ ×240 → sens~ ×15
 - close the gap between current upper limit and SM
- Where? When?


NA48/3 ??

CERN is currently the only place where high energy kaon beams could be employed

Future (unkwnown state of matter)

 $K_L \Rightarrow \pi^0 \nu \bar{\nu}$ at a Φ factory? F. Bossi

The search for $K_L \rightarrow \pi^0 vv$ is probably the most exciting goal and solid motivation for the high luminosity option of DA Φ NE 2 (see Gino's talk yesterday)

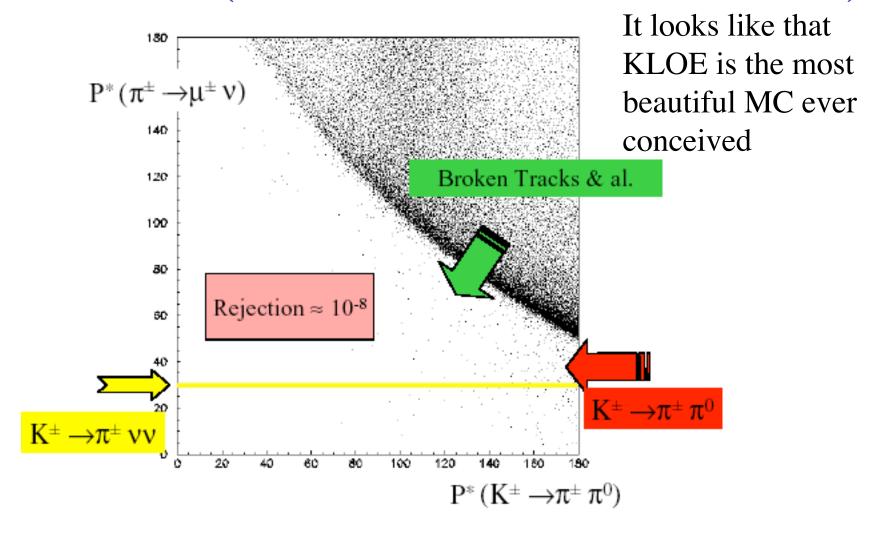
It requires however luminosities of order 1035 cm-2s-1

Future (unkwnown state of matter)

1 year @
$$10^{32} = 1$$
 fb⁻¹ $\approx 3 \cdot 10^9 \Phi \approx 3 \cdot 10^9$ K[±]

Allows few per mil measurement of O(1%) BRs
$$V_{us}$$
 @ / below 1% (theor. error...?) $\delta_g(K \xrightarrow{\pm} \pi \xrightarrow{\pm} 2\pi^0)$ below 1 %

1 year @
$$5.10^{33} = 50 \text{ fb}^{-1} \approx 1.5 \cdot 10^{11} \, \Phi \approx 1.5 \cdot 10^{11} \, \text{K}^{\pm}$$


$$\approx$$
 2 10⁶ K[±] → e[±]ν produced
≈ 15 K[±] → π[±] νν produced

1 year @
$$10^{35} = 10^3 \text{ fb}^{-1} \approx 3 \ 10^{12} \ \Phi \approx 3 \ 10^{12} \ \text{K}^{\pm}$$

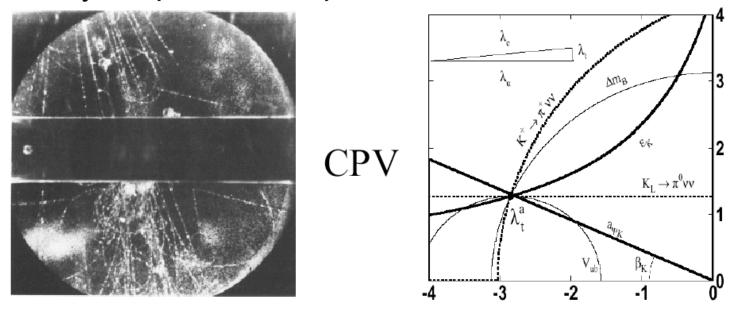
→ ≈ 300 K[±] →
$$\pi$$
[±] vv produced

L. Passalacqua / LNF-INFN & the KLOE K[±] group.

Future (unkwnown state of matter)

L. Passalacqua / LNF-INFN & the KLOE K[±] group.

$$\varepsilon_{\text{START}} = (2\varepsilon_{\text{a}}) \cdot 0.85 \cdot (2\varepsilon_{\text{a}}) \cdot 0.3 \sim 9\%$$


Conclusions

- Great opportunity of comparing things and exchanging idea. Start of an exciting process.
- Thanks to all for their great presentations
- Forgive me those of you I had no time to show your results
- and.....if we get Jedi Master Joda to help us

Long live to Kaon Physics

Once upon a time, (neutral) kaons delivered many surprises and precious insight...

... they are still doing so today, their charged partners can join as well as effective CPV and

September 1 Th probes

M. Sozzi – Charged K experiments

e⁺e⁻ Alghero Workshop