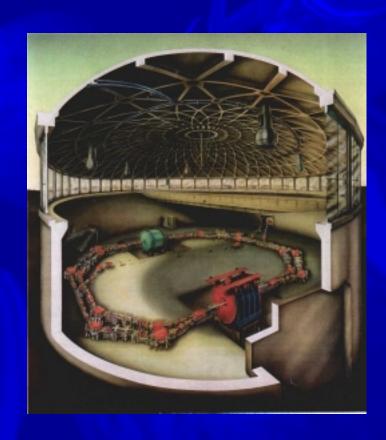
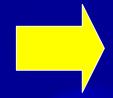
Vacuum

From DAΦNE to DAΦNE2 A.Clozza

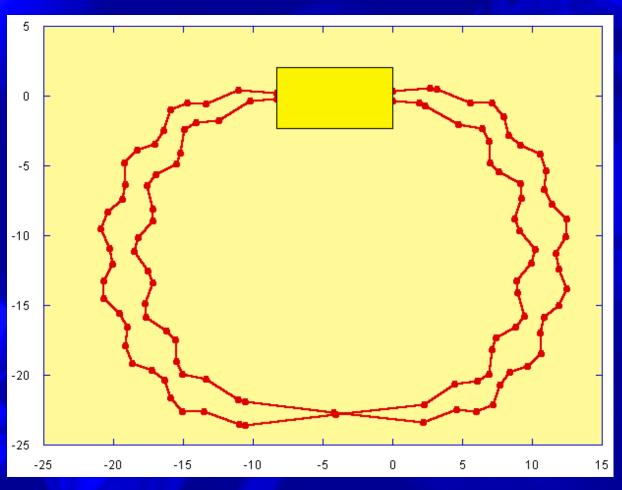

Workshop on e+e- in the 1-2 GeV range

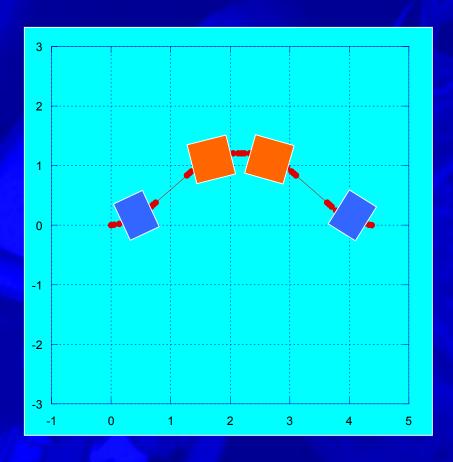
Outline


- DAFNE
- Two hypothesis
- Technical issues
- Costs
- Man Power
- Conclusions

DAFNE

- 510 MeV
- 5.3 A
- 50 kW
- 3·10²¹ phot./s
- 1·10⁻⁹ mbar


DAFNE



DAFNE2

- High Luminosity
 - 510 MeV
 - -3.6 A
 - 130 kW
 - 8·10²¹ phot./s
 - 1·10⁻⁹ mbar

- High Energy
 - 1.1 GeV
 - -0.5 A
 - 45 kW
 - 7·10²⁰ phot./s
 - 1·10⁻⁹ mbar

Synchrotron radiation

$$-N_{\gamma} = 8.1 \cdot 10^{21} \text{ phot. s}^{-1}$$

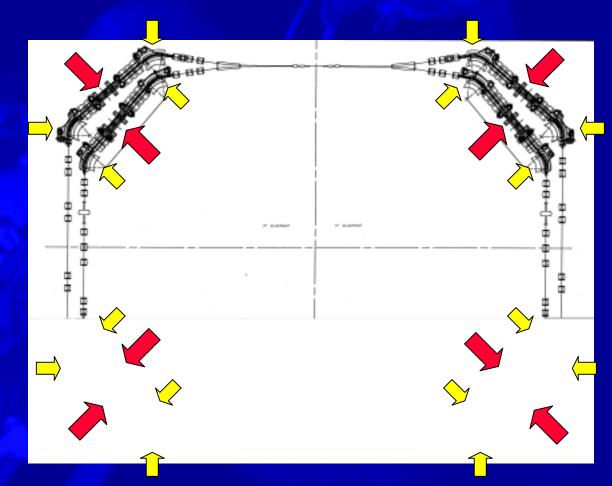
$$-P_{tot} = 130 \text{ kW}$$

- Vacuum System
 - Total gas load

 $Q = 3.2 \cdot 10^{-4} \text{ mbar I s}^{-1}$

Working pressure

 $P = 1.10^{-9} \text{ mbar}$


Installed pumping speed

 $S = 3.2 \cdot 10^5 \, \text{J s}^{-1}$

DAPNE like

2.2 T Bendings

1.8 T Wigglers

Workshop on e+e- in the 1-2 GeV range

- Synchrotron radiation
 - $-N_{\gamma} = 7.10^{20} \text{ phot. s}^{-1}$ $-P_{\text{tot}} = 45 \text{ kW}$

- Vacuum System
 - Total gas load

 $Q = 2.8 \cdot 10^{-5} \text{ mbar I s}^{-1}$

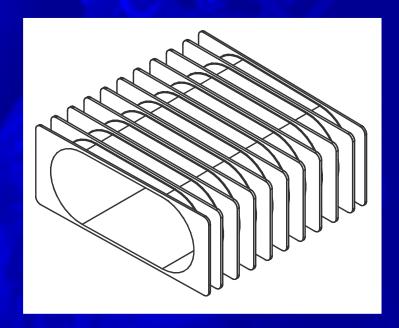
Working pressure

 $P = 1.10^{-9} \text{ mbar}$

Installed pumping speed

 $S = 2.8 \cdot 10^4 \, \text{I s}^{-1}$

Energy ramping


Ramping rate

Eddy currents

Thin vacuum chamber

Costs

High Luminosity

High Energy

7 M€

Up to 4 M€

Man Power

High Luminosity

High Energy

10 man year

5 man year

Conclusions

- Both are feasible
- High Luminosity
 A new machine
 - More demanding on costs and man power
- High Energy
 DAФNE upgrade
 - Less demanding on costs and man power