$K_L \Rightarrow \pi^0 v \overline{v}$ at a Φ factory?

F. Bossi LNF-INFN

Alghero, Sept. 11, 2003

Some bare facts:

A Φ -factory is naturally suited for a search of $K_L \rightarrow \pi^0 v v$ events since:

- Kaons are tagged
- Kaons 4-momentum is known (reconstruction of decay kinematics allowed)
- Beam free of neutral baryons backg.

Some bare facts:

The machine

2 options under study:

```
"conventional"
```

E_{beams} = 510 MeV

Short beams ($\sigma_z \sim 2 \text{ mm}$)

```
Improved optics
```

"large crossing angle"

```
E_{\text{beams}} \sim 1 \; GeV
```

Gain from natural increase of luminosity with energy

Detector concepts: "conventional" 4 m 1.8 m 2 m fiducial volume 0.5 m not to scate 0.4 m 0.4 m tagger $S_{calo} \sim 25 \ \pi \ m^2$ calorimeter acc. ~ 27%

Detector concepts: "forward" 10 m $E_{beam} = 1 \text{ GeV}$ fiducial volume beam hole 8 m 4 m •0.4 m 1 m tagger not to scale calorimeter $S_{calo} \sim 25 \ \pi \ m^2$ acc. ~ 23%

Detector concepts: common

Choice of components driven *mainly* by the exceptionally high need for background rejection : (~ $10^8 K_L \rightarrow 2\pi^0$ decays)

Calorimeter:

- **Totally hermetic**
- Highly efficient to γ (20 MeV E_{max}) Excellent timing performance for decay point/time determination
- with the **KLOE** method (bunch x-ing every ~ 3 ns)

Tagger:

- Compact
- High rate capabilities because (also) of machine background close to i.p.

Photons acceptance

"forward "

naturally hermetic critical point: beam hole $P_{2\gamma lost} \sim 10^{-7} (2\pi^0 decays)$

"conventional" critical point: i.r. + tagger $P_{2\gamma lost} \sim k f(x^0)^2_{tagg}$ ($2\pi^0$ decays)

R _{min} (cm)	k	acc.(%)
50	1.10-4	27
80	3·10⁻⁵	18
100	2·10 ⁻⁵	14

(R_{max} = 180 cm)

Photon detection efficiency

Enormous amount of work done by KOPIO, KAMI and KEK-E8171 mainly on *lead-scintillator* calorimeters

I use numbers close to those on KOPIO proposal for my calculations (albeit slightly more pessimistic)

Photon detection efficiency still the key issue

Interaction region

Interaction region design very different in the two cases. Common concepts are however used

- Beam pipe(s) of small transverse dimension (~ 1 cm)
- Low- β quadrupoles very close to i.r. (~ 20 cm)
- Compact elements to be used ($R_{quad} \sim 2 \text{ cm}$)

The tagger: forward

Due to "forward" geometry the tagging device has to be accommodated in a region filled with machine elements

Clever design + use of *compact components* needed

No *magnetic* measurement of *K_s* momentum allowed not to interfere with beams

A time of flight system must be envisaged for K_s daughter to allow t_0 determination

The tagger: conventional

The need for low- β quads close to the I.P. + hermetic calorimetry reduces acceptance to K_s

op.	angle	K _s acc.
(de	grees)	(%)
	45	60
	60	80
	80	90

Amount of material to be minimised to keep backwards γ losses under control. Nothing conceivable less than 2-3 % X₀. $\Rightarrow P_{2\gamma lost} \sim 10^{-8}$

Experience with KLOE/DA Φ NE \Rightarrow rates O(10 kHz) on inner DC wires (R = 35 cm)

Better be prepared to O(100 kHz) @ D2 ! (although on paper should be better)

Event rates and trigger

Besides machine background, *physics* event rates are big:

- Φ decays ~ 300 kHz
- Large angle Bhabhas O(100 kHz) (depending on acceptance)

A very selective trigger needed

(Farewell, my lovely !)

Conclusions

Physics & Machine

The search for $K_L \rightarrow \pi^0 v v$ is probably the most exciting goal and solid motivation for the high luminosity option of DA Φ NE 2 (see Gino's talk yesterday)

It requires however luminosities of order **10³⁵** cm⁻²s⁻¹

The *large x-ing angle* option, although fascinating, seems to present some major disadvantage in terms of tagging wrt to the conventional one

Beam related *backgounds* have to be kept under control

Conclusions

Detector

Supplementary investigations needed on *photon detection efficiency*

Tagging and t_0 determination are an issue

New detector concepts are still conceivable: *bigger is better (?)*

...to be continued...