Upgrades of Particle Factories

C. Biscari LNF - INFN

The annihilation production cross section in e⁺e⁻ collisions and the necessary integrated luminosity scale with Energy:

 $L \propto \frac{1}{\sigma} \propto E^2$

Integrated luminosity by KEKB, PEPII and DAΦNE

	E _{cm} GeV	logged ∫L	requested ∫L
В	10.6	~ 300 fb ⁻¹	10ab ⁻¹
τ	3.9	< 1 fb ⁻¹	>100fb ⁻¹
light quarks	2	< 10pb ⁻¹	500pb ⁻¹
Φ	1	< 1 fb ⁻¹	> 100fb ⁻¹

requested /L for next collider generations

PAST, PRESENT AND FUTURE

B-Factories

	E _{cm} (GeV)	Lnow	Lfuture
KEK-B	10.6	1.06 10 ³⁴	<i>10</i> ³⁶
PEP-II	10.6	6.6 10 ³³	<i>10</i> ³⁶
CESR	3-10.6	1.3 10 ³³	0.15-1.3 10 ³³
BEPC	2-5.6	10 ³¹	<i>10</i> ³³
VEPP2000	1 - 2	_	<i>10</i> ³²
DAFNE2	2	_	<i>10</i> ³²
DAΦNE	1	7.8 10 ³¹	>10 ³³

super B factories

	KEK-B		PEP II		
	Super	Hyper	next	Super	Hyper
E + (GeV)	3.5	3.5	3.1	3.5	3.5
<i>E</i> - (GeV)	8.0	8.0	9.0	8.0	8.0
<i>C</i> (m)	3016	3016	2199	2199	2199
$L (10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	10	40-100	2.5 - 4	20	100
$\beta^{*}(\mathbf{m})(\mathbf{h})$	30	15	0.5	0.3	0.15
$\beta^{*}(m)(v)$	0.003	0.003	0.0065	0.0037	0.0015
ε (n rad) (h)	33	33	44	44	44
ϵ (n rad) (v)	2	0.33	0.44	0.44	0.44
θ (mrad)	15	0	0 - 4	10	15
ξ(h)	0.068	0.1	0.08	0.10	0.10
ξ(v)	0.05	0.2	0.08	0.10	0.10
N bunches	5018	5018	1700	3400	7000
I+ (A)	9.4	17.2	4.5	11.0	10.3
I - (A)	4.1	7.8	2.0	4.8	2.35
f _{RF} (MHz)	509	509	476	476	952

10³⁴ PEP II

increase n. of bunches increase currents feedback – substitute longitudinal kicker add solenoids – ECI MIA (correction algorithm)

2-4 10³⁴ PEP II *lowering* β_y *increase rf power shortening bunch length increase nb* (4 nsec spacing) ->1700 (x2) *small* $\theta \sim 4$ mrad

10³⁵ **PEP II**

Increase n of bunches x 2 feedback upgrade (2 nsec) diminish beam asymmetry ____

lowering β_y : nearer quads IP increase N+ Nincrease ε_x increase $\theta \sim 10 \text{ mrad}$

10³⁵ *KEK-B*

Increase n of bunches x4 lowering β_y increase N+ Nincrease ε_x increase rf power

vacuum chamber design rfshields beam energy switch for ECI

Higher acceleration field scheme for 8 GeV

e+

Layout of beam lines at IR

Final focusing quadrupoles (QCS) locate at the position as close to the IP as possible.

Pos. from the IPSuper-KEKBKEKBQCS-R1163.3 mm1920 mmQCS-L969.4 mm1600 mmThe QCS magnets are overlaid with the compensation solenoids (ES). \longrightarrow compact & short in z e+e- in the 1-2 GeV range: -
September 2003

10³⁶ PEP II

Increase n of bunches x 2 : 7000 f_{rf} x2 : 950 MHZ feedback upgrade (<1 nsec)

lowering β_y *nearer quads iP decrease* N+ N-

increase $\theta \sim 15$ mrad

PEP-II IR for $L = 10^{36}$

10³⁶ KEK-B

Increase bunch current x 2 (I+ 17A, I-8A) same n_b b-b with crab crossing O crossing angle lower coupling high b-b tune shift

Crab crossing

• Bunches are tilted by crab cavities.

Ohnishi – 10³⁶ Workshop at SLAC, May 8, 2003

Present design for KEKB test before 2005 Crab cavity

- Squashed cell operating in TM2-1-0 (x-y-z)
- Coaxial beam pipe + HOM dampers
- Designed for 1–2A beam

(K. Akai et al., Proc. B-factories, SLAC-400 p.181 (1992).)

K. Hosoyama and K. Akai et al.

- Squashed cell operating in TM2-1-0
- HOM damping using wave guides without coaxial beam pipe damper

New design for SuperKEKB, 10A beam

super B factories

	KEK-B		PEP II		
	Super	Hyper	next	Super	Hyper
E + (GeV)	3.5	3.5	3.1	3.5	3.5
<i>E</i> - (GeV)	8.0	8.0	9.0	8.0	8.0
<i>C</i> (m)	3016	3016	2199	2199	2199
$L (10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	10	40-100	2.5 - 4	20	100
$\beta^{*}(\mathbf{m})(\mathbf{h})$	30	15	0.5	0.3	0.15
$\beta^{*}(m)(v)$	0.003	0.003	0.0065	0.0037	0.0015
ε (n rad) (h)	33	33	44	44	44
ϵ (n rad) (v)	2	0.33	0.44	0.44	0.44
θ (mrad)	15	0	0 - 4	10	15
ξ(h)	0.068	0.1	0.08	0.10	0.10
ξ(v)	0.05	0.2	0.08	0.10	0.10
N bunches	5018	5018	1700	3400	7000
I+ (A)	9.4	17.2	4.5	11.0	10.3
I - (A)	4.1	7.8	2.0	4.8	2.35
f _{RF} (MHz)	509	509	476	476	952

τ-charm factories

	E _{cm} (GeV)	Lnow	Lfuture
KEK-B	10.6	9.7 10 ³³	<i>10</i> ³⁶
PEP-II	10.6	5.2 10 ³³	<i>10</i> ³⁶
CESR	3-10.6	1.3 10 ³³	0.15-1.3 10 ³³
BEPC II	2 - 5.6	10 ³¹	10 ³³
VEPP2000	1 - 2		10 ³²
DAFNE2	2	_	<i>10</i> ³²
DAΦNE	1	7.8 10 ³¹	>10 ³³

τ -charm factories

Collider	CESRc[2]	BEPC II [3]
status	operating	in construction
<i>E</i> (GeV)	1.88	1.89
<i>C</i> (m)	768	237.5
$L (10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	3	10
rings	1	2
IPs	1	1
β* (m) (h / v)	0.7/ 0.011	1 / .015
ε (μ rad) (h / v)	0.22	0.17 / 0.002
θ (mrad)	±2.8	± 11
• (rad)	0.07	0.4
σ _z (cm)	1.0	1.5
N _b (10 ¹⁰)	6.4	4.8
ξ (h / v)	0.03 / 0.03	0.04 / 0.04
N bunches	45	93
I(A)	.18	0.91
f _{RF} (MHz)	500.0	499.8
V (MV)	10	1.5

6 wigglers installed and in commissioning Run @ 3 GeV since April '03

Other 6 wigglers will be installed in one year and CESR will run until 2008 at three energies between 3.1 and 4.1 GeV

Table 1: Parameters with and without wigglers (1.9 GeV)				
Parameter	No Wigglers	18m 2.1T wigglers		
ε _X	30	220 nm-rad		
Damping time	570	55 ms		
$\sigma_{E}\!/E_{0}$	2×10^{-4}	8x10 ⁻⁴		

Table 2: CESR-c Parameters

E ₀ [GeV]	1.55	1.88	2.5	5.3
Luminosity [+10 ³⁰ cm ⁻² -sec ⁻¹]	150	300	500	1250
ib [mA/bunch]	2.8	4.0	5.1	8.2
Ibeam [mA/beam]	130	180	230	360
ξ _v	0.035	0.04	0.04	.06
ξ _x	0.028	0.036	0.034	.028
$\sigma_{E}/E_{0} [x10^{3}]$	0.75	0.81	0.79	0.67
$\tau_{x,y}$ [ms]	69	55	52	22
B _W [Tesla]	2.1	2.1	1.75	0
β_v^* [cm]	1.0	1.0	1.0	1.8
ε _x [nm-rad]	230	220	215	205

Build new ring inside existing ring, two half new rings and two half old rings cross at two interaction regions, forming a double ring collider.

Commissioning by 2006

Light Quark Factories

	E _{cm} (GeV)	Lnow	Lfuture
KEK-B	10.6	9.7 10 ³³	<i>10</i> ³⁶
PEP-II	10.6	5.2 10 ³³	<i>10</i> ³⁶
CESR	3-10.6	1.3 10 ³³	0.15-1.3 10 ³³
BEPC	2 - 5.6	10 ³¹	10 ³³
VEPP2000	1 - 2	_	10 ³²
DAFNE2	2	_	<i>10</i> ³²
DAΦNE	1	7.8 10 ³¹	>10 ³³

Light Quark Factories			
Collider	VEPP2000	DAFNE 2	
status	in construction	design study	
E (GeV)	1.	1.	
<i>C</i> (m)	24	97	
$L (10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	1	1	
IPs	2	1	
β* (m) (h / v)	0.1 / 0.1	1.5 / 0.025	
ε (μ rad) (h / v)	0.136 / 0.136	0.5 / 0.0025	
θ (mrad)	0	± 15	
(rad)	0	0.26	
σ _z (cm)	3	1.1	
N _b (10 ¹⁰)	10	3	
ξ (h / v)	0.1 / 0.1	0.014 / 0.024	
N bunches	1	30	
I(A)	0.20	0.45	
f _{RF} (MHz)	172	368.3	
V (MV)	0.12	0.25	

View of the VEPP-2000 collider

Experimental testing of RCB should verify predictions on extremely high attainable space charge parameters for the round beams.

DAFNE2 (2 GeV, Frascati) *Feasibility study*

"Easier" luminosity than at Φ Naturally increase radiation damping and lifetime

b-b tune shifts / 2 shorter bunch length (I_{thrs} *10) -> lower β_y roughly same L with I/2 and $N_b = 3/5$

hardware: dipoles, splitters, 20% of quads, IR

Φ -Factories

	E _{cm} (GeV)	Lnow	Lfuture
KEK-B	10.6	9.7 10 ³³	<i>10</i> ³⁶
PEP-II	10.6	5.2 10 ³³	<i>10</i> ³⁶
CESR	3-10.6	1.3 10 ³³	0.15-1.3 10 ³³
BEPC	2 - 5.6	10 ³¹	10 ³³
VEPP2000	1 - 2	_	10 ³²
DAFNE2	2		<i>10</i> ³²
DAΦNE	1	7.8 10 ³¹	>10 ³³

DA ΦΝΕ

Restarting now with two solenoidal detectors after a long shutdown

3 fb⁻¹ by end 2005

Φ - factories

Collider	DAΦNE
status	until 2005
<i>E</i> (GeV)	.51
<i>C</i> (m)	97
$L (10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	>1
IPs	1
β* (m) (h / v)	1 / 0.025
ε (μ rad) (h / v)	0.6 / 0.006
θ (mrad)	± 16
(rad)	0.39
σ _z (cm)	2
N _b (10 ¹⁰)	3.6
ξ (h / v)	0.027 / 0.043
N bunches	100
I (A)	1.8
f _{RF} (MHz)	368.3
V (MV)	0.2

Super Φ factory

10³³ attainable stressing present design 10³⁴ needs new ideas

'non conventional' L

Four beams

- Why four beams ?
 - Four beams is one method to compensate beam-beam effect to increase luminosity.
 - The colliding bunches have neutral net charges and produce no beambeam forces.
 - This scheme was studied at DCI (Orsay) in ~1971(?).
 - Beam-beam limit was not significantly different from two beams. (G. Arzelia et al.)

Ohnishi – 10³⁶ Workshop at SLAC, May 8, 2003

<u>Ohmi-Ohnishi et al</u> <u>KEKB</u>

 Vertical incoherent motion seems to be correlated with horizontal coherent dipole motion.

•Feedback system may help to damp coherent dipole motions.

 Beam-beam compensation is not so good compared with four beams.
(Quadrupole and octupole motions near resonance)

negative momentum compaction

ring against linac

monochromators

. . .

30th Advanced ICFA Beam Dynamics Workshop on High Luminosity e+e- Collisions

October 13-16, 2003 Stanford, California

Beam Dynamics Newsletter

No. 31

lssue Editor: Y. Funakoshi

Editors in Chief: W. Chou and J.M. Jowett

August 2003

Dedicated to:

HIGH LUMINOSITY E+ E- COLLIDERS

CONCLUSIONS

