CES Re Wiggler Magnets

ICFA Mini-workshop - Working Group on High Luminosity e+eColliders, 10-13 September 2003, Alghero (SS), Italy

Alexander Temnykf for CES Rc working group
-K. B erkelman
-J. C odne
-A. Devred
-G. Dugan
-R. Ehrlic h
-M. Forster
-Z. Greenwald
-Y. He
-Y. Li
-V. Medjidzade
-A. Mikhailichenko
-N. Mistry
-T. Moore
-E. Nordberg
-D. Rice
\cdot •. Rogers
-D. Rubin
-D. Sagan
-E. Smith
-S. Temnykh
-M. Tigner

Contents

- Wiggler magnets specification choice
- Magnetic design and modelcalculation
- Cold mass and cryostat design
- Magnetic field performance
- Hall probe field mapping
- Stretched coilmeasurement
- Beam based characterization
- Conclusion

Specification choice

1. Pe ak field

In wigglers dominated macfine: $\frac{?_{E}}{E} \square \sqrt{B_{w}} ; \quad \frac{1}{?} \square B_{w}^{2} L_{w}$
To keep energy spread $<8 e-4$, $\mathcal{B} w$ should be $<2.1 T$. To provide damping time $\sim 55 \mathrm{~ms}$, Lw (total wiggler lengtf) sfould be ~ 18.2 m
2. Wiggler period and field roll of requirement:

$$
\begin{aligned}
& \square y^{\prime} ? ? \frac{B_{w}^{2} L}{2(B ?)^{2}} \stackrel{?}{?} y ? \frac{2}{3} \frac{?}{3} \stackrel{2 ?}{?} \frac{?^{2}}{?} y^{3} ? \stackrel{?}{?} \\
& \square x^{\prime} ? ? \frac{L x_{p}}{2(B ?)} \frac{? B_{y}(x)}{? x} ; \quad x_{p} ? \frac{B_{w}}{B ?} \frac{?}{?} \frac{?}{2 ?} \frac{?^{2}}{?}
\end{aligned}
$$

Longer period results in we aker cubic non-line arity, but increases orbit excursion whichincrease sensitivity to field non-uniformity across wiggler poles. Reasonable compromise:

$$
? ? ? ? ? c m ; d \mathcal{B} / \mathcal{B} \text { at } 4 \mathrm{~cm} \sim 2.5 e-3
$$

Magnetic design: two types

	7 poles (symmetric)	8 poles (asymmetric)
Poles length [cm]	$15+20+20+20+20+20+15=130$	$10+15+20+20+20+20+15+10=130$
$\mathcal{B} m a x / p o l e[\mathcal{T}]$	$-1.6 / 2 \cdot 1 /-2 \cdot 1 / 2 \cdot 1 /-2 \cdot 1 / 2 \cdot 1 /-1.6$	$-1.1 / 2 \cdot 1 /-2 \cdot 1 / 2 \cdot 1 /-2 \cdot 1 / 2 \cdot 1 /-2 \cdot 1 / 1.1$

Field along magnet

Beam
trajectory

Mode 1 Calculation

3-D modelmagnetic field calculation with "Vector Field" software

7 pole
model

Wiggler (7 pole model) transfer function: forizontal and verticalkicks as function of forizontal and vertical beam position

Mode Calculation

7 -pole and 8 -pole wigglers forizontal transfer function,

$$
x^{\prime}(x, y=0)
$$

Cold mass and cryostat design

Assembly in cryostat

Magne tic field performance: Hall probe

 field mappingWiggler\# 1, 7poles

$\mathcal{B y}(z)$, $\mathcal{H a l l}$ probe measurement and modelcalculation

Difference between measurement and calculation

Magnetic field performance: stretched

 coil measurement.

First integral with strait coil:

$$
\tilde{I}_{1} ? \frac{F^{2} x_{s t}}{a_{0}} ? \frac{1}{a_{0}} \underset{0}{l} a_{0} B(z) d z ?{ }_{0}^{l} B(z) d z ? I_{1}
$$

Second integral with twisted coil:
$\tilde{I}_{2} ? \frac{\text { Flux }_{t w}}{a_{0}} ? \frac{1}{a_{0}} \underset{0}{l} B(z) a(z) d z ? \frac{1}{a_{0}} \underset{0}{l} B(z) a_{0}\left(1 ? \frac{2 z}{l}\right) d z \underset{0}{?} \underset{\sim}{l} B(z) d z ? \frac{2}{l} \underset{0}{l} B(z) z d z ? I_{1} ? \frac{2}{l} I_{2}$

Magnetic field performance: wiggler \# 1 (7p)

Variation of Ily versus x
Wiggler \#1 (7pole) magnetic measurement with long flipping coil.
July 26 2002, ST

Variation of I1x versus x
Wiggler \#1 (7pole) magnetic measurement with long fliping coil.

Magnetic field performance: wiggler \# 2 (7p)

Variation of I1y versus x
Wiggler \#2 (7 Poles) magnetic measurement with long flipping coil. Jan 10 2003, ST

Variation of first integral of horizontal field with x,
Wiggler \#2 (7 Poles) magnetic measurement with long fliping coil.

Magnetic field performance: wiggler \#3 (8p)

Variation of I1y versus x.
Wiggler \#3 (8 Poles) magnetic measurement with long flipping coil.

Variation of first integral of horizontal field with x, Wiggler \#3 (8Poles) magnetic measurement with long fliping coil.

Magne tic field performance: wiggler \# 4 (8 p)

Variation of I1y versus x (Normal field integral, b0 subtracted) Wiggler \#4 (8 Poles) magnetic measurement with a long flipping coil.

Variation of I1x with x , (Skew field integral)
Wiggler \#4 (8Poles) magnetic measurement with long fliping coil. Feb 19 2003, ST

Magne tic field performance: wiggler \# 5 (8p)

Variation of Ily versus x
Wiggler \#5 (8 Poles) magnetic measurement with a long flipping coil.

Variation of I1x with x, (Skew field integral)
Wiggler \#5 (8Poles) magnetic measurement with long fliping coil. Feb 28 2003, ST

Magne tic field performance: wiggler \# 6 (8 p)

Variation of I1y (normal field) versus x
Wiggler \#6 (8 Poles) magnetic measurement with a long flipping coil.

Variation of I1x with x , (Skew field integral)
Wiggler \#6 (8Poles) magnetic measurement with long fliping coil.
March 18 2003, ST

Beam based cfiaracterization: \mathcal{N} ov 2002 , one wiggler optics, wiggler \# 1 (7p)

1) Wiggler generated coupling:

Localcoupling around the ring Wave analysis indicated the source of the coupling at the wiggler location (BPDM 85).
source of coupling error at wiggler

Skew quadrupole moment measured with beam $\sim 2 \mathrm{Gm} / \mathrm{cm}$ From magnetic measurement $\sim 1.5 \mathrm{Gm} / \mathrm{cm}$ In modelskew quadrupole moment is "zero".

Beam based characterization: \mathcal{N} ov 2002,

 one wiggler optics, wiggler \# 1 (7p)2) Wiggler generated tune dependence on beam position

Me asured and calculated* dependence of vertical/forizontal tune versus vertical beam position in wiggler. Bmax $=2.1 \mathcal{T}$

Me asured and
calculated* dependence of vertical/horizontal tune versus forizontal beam position in wiggler.

* from the wiggler transfer function

Beam based characterization: \mathcal{N} bv 2002,

 one wiggler optics, wiggler\# 1 (7 p)3) $2 \mathcal{D}$ tune scan: vertical beam versus tune, evaluation with wiggler field

Oct. 14 2002, Optics: 1843MeV_1WIG_R3_OT,fs $=25 \mathrm{kHz}$ Observed resonances

Wiggler $O \mathcal{F} \mathcal{F}:-f f+f v=0,-f \kappa+f \pi-f s=0, f \kappa+2 f v+f s=2 f 0, \mathcal{P}_{\text {m }} a x=3$
Wiggle $O \mathcal{N}:-3 f h+f v=-f 0, f h+f v-3 f s=f 0,3 f v=2 f 0$, $f h+2 f v+2 f s=2 f 0,4 f \kappa+f v=3 f 0,2 f h+f v+2 f s=2 f 0,2 f \pi-2 f s=f 0$ and $3 f h+f v+f s=-f 0, \mathcal{P}_{\text {max }}=5$

Beam based characterization: $\mathcal{A} u g$ 2003,

 6 wigglers optics $(4 \chi 8 p+2 \chi 7 p)$- Three 8 -pole wigglers group test using local orbit distortion

Vertical and horizontal tune versus vertila beam position at three 8-pole wigglers cluster, VB 58.
(ST, Aug 21 2003)

Measured and calculated tune versus vertical beam position in 18 E wiggler cluster.

Measured and calculated tune versus horizontal beam position in 18 E wiggler cluster.

Beam based characterization: Aug 2003,

 6 wigglers optics $(4 x 8 p+2 x 7 p)$- I wo 7-pole wigglers group test using local orbit distortion.

Beam based characterization: Aug 2003, 6 wigglers optics $(4 x 8 p+2 \chi 7 p)$

Optics: 6 wigs_lum_ $\ldots, f s=18 \mathrm{kHz}$

Vertical beam size versus tune. a) flatten orbit, 6) pretzeled orbit (horizontal orbit distortion $\sim+10 \mathrm{~mm}$)

Conclusion

1. Two versions of the CES Rc wiggler magnets with symmetric (7 poles) and asymmetric (8 poles) structure have been developed, built and tested.
2. Magnetic field measurement reveled that magnets with asymmetric structure have significantly less variation of integrated magnetic field properties with excitation than witf symmetric.
3. Beam based characterization of the wiggler magne ts confirmed modelcalculation and results of magne tic field measurement.

Material from the following references fias been used in presentation:

1. I. Crittenden, A. Mikhailichenko, A. Temnykf, Design Considerations for CESR-c Wiggler Magnets, to be publisfed in PAC2003 proceedings.
2. D. Rice, S.Chapman, R. Gallagher et al. Production and Testing Considerations for CES R-c Wiggler Magne ts, to be published in PAC2003 proceedings.
3. A. Temnykf, Vibrating Wire and Long Integrating Coil Based Magnetic Measurements of a 7-pole Super. Conducting Wiggler for CES R, to be published in PAC2003 proceedings.
4. I.Safraneket al., Nonline ar Dynamics in SPEAR Wigglers, EPAC' 2000, p. 295

b2 (normal sextupole) and a1(skew quad) components vs current for wigglers \#1,2,3,4,5,6

a1 (skew quad) versus current for wiggler \#1,2 (7pole) and \#3,4,5, 6 (8 pole).

