

Status of the VEPP-2000 Collider Project

Yuri Shatunov

Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia

Frascati, September 2003

Layout of the VEPP(-2M)-2000 collider complex

★ $E \approx 1 \text{ GeV}$ (per beam)
 ★ $L \approx 1 \times 10^{32} \text{ cm}^{-2} \text{ sec}^{-1}$ (1×1 bunch)

ВЭПП-2000

TASKS for VEPP-2000:

1. To study "peculiarities" above 1.4 GeV (total).

2. To measure with good enough precision total hadron cross-section in 1.4 - 2 GeV (total) - for hadron contribution to muon g-2.

3. To measure form-factors (in time-like region) for protons and neutrons

 $e^+ + e^- \longrightarrow p^+ \text{ anti-}p; \qquad e^+ + e^- \longrightarrow n^+ \text{ anti-}n.$

4. For accelerator physics: "Round Beams"!

Increasing the Luminosity

Number of bunches

Bunch-by-bunch luminosity

$$L = \frac{\pi \gamma^2 \xi_x \xi_y \varepsilon_x f}{r_e^2 \beta_y^*} \left(1 + \frac{\sigma_y}{\sigma_x}\right)^2$$

Round Beam:

✓ Geometric factor
 ✓ Beam-beam limit enhancement

Concept of Round Beams

Conservation of the z-component of angular momentum $M_z = yp_x - xp_y$

Requirements:

Round cross-section of beams at IP
 Machine optics has rotational symmetry

4×4 transfer matrix

$$T = \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$$

➡

Motion in central field with additional integral of motion reduces the transverse oscillations from 2D to 1D!

(V.V.Danilov *et al*, Frascati Physics Series Vol. X (1998), p.321)

Practical Realization of Round Beams: Options for VEPP-2000

Practical Realization of Round Beams

Conversion of conventional machine using beam adapters

(A.Burov, S.Nagaitsev, Ya.Derbenev, FERMILAB-Pub-01/060-T)

View of the Collider

Lattice

Weak-Strong Beam-Beam Simulation

Weak-Strong Beam-Beam Simulation

Emittance of the weak beam vs. the beam-beam parameter. Sextupoles on. 1,2 – two codes.

Strong-Strong Beam-Beam Simulation

Macroparticles/bunch N_p = 50000, transverse mesh 128x128; Field calculated via FFT (K.Ohmi, Phys. Rev. E **59**, 7287 (2000))

Strong-Strong Beam-Beam Simulation

Strong-Strong Beam-Beam Simulation

Comparison of the sextupoles on and off options.

Main Parameters of VEPP-2000

Parameter	Value
Circumference	24.38 m
RF frequency	172 MHz
RF voltage	100 kV
RF harmonic	14
Momentum compaction	0.036
Synchrotron tune	0.0035
Energy spread	6.4×10^{-4}
Beam emittances (x,y)	1.29×10^{-7} m rad
Dimensionless damping decrements (x,y,z)	2.19×10^{-5} , 2.19×10^{-5} , 4.83×10^{-5}
Betatron tunes	4.05, 2.05
Betatron functions @ IP	10 cm
Particles per bunch	1×10 ¹¹
Beam-beam parameter (x,y)	0.075, 0.075
Luminosity per IP (at 1GeV)	$1 \times 10^{32} cm^{-2} s^{-1}$

Dipole Magnet (2.4 T)

Dipole: Magnetic Measurements

Dipole: Magnetic Measurements

31.10.02

Quadrupole

Quadrupole: Magnetic Measurements

Vacuum Chamber

Single-Mode RF Cavity (172 MHz)

Calculated main mode & HOM

Ö

f,MHz

RF cavity parts

Solenoid 13.0 T

Solenoid: Coils

Nb-Sn

Nb-Ti

13.08.01

Assembly of the Nb-Ti and Nb-Sn coils

POSITRON SOURCE

21.08.03

Summary

▲ Start of VEPP-2000 construction – January 2000

Dipole, quads, sextupoles, skew-quads, steering coils,
 6 from 8 vacuum chamber are ready, tested and installed

▲ 13 T field is achieved in solenoid prototype

Weak-strong and strong-strong simulation show high ξ
 for the round beams

Construction of transfer line from e⁺ source is going on

• Beam \rightarrow at the end of 2004

