Narrow Structures in High Statistics Diffractive Photoproduction

Simone Pacetti

Università di Perugia and Laboratori Nazionali di Frascati

A narrow structure ($\Gamma \simeq 30 \ MeV$ and $M \simeq 1900 \ MeV$) observed by E687 in the 6 pions final state data of the diffractive photoproduction and possible interpretations

(P.L. Frabetti et al. Phys. Lett. B514 (2001) 240)

- Connection between photoproduction and e^+e^- annihilation
- Set of data and fit
- Properties of the dip
- Possible nature of the dip

A narrow structure ($\Gamma \simeq 30 \ MeV$ and $M \simeq 1900 \ MeV$) observed by E687 in the 6 pions final state data of the diffractive photoproduction and possible interpretations

(P.L. Frabetti et al. Phys. Lett. B514 (2001) 240)

- Connection between photoproduction and e^+e^- annihilation
- Set of data and fit
- Properties of the dip
- Possible nature of the dip

A new analysis of sub-structures in the 4 pions final state of the E687 diffractive photoproduction

- (P. Lebrun Hadron '97, Aug. 25-30, 1997)
- Fit of the $\pi^+\pi^-$ distribution
- Fit of the $2\pi^+2\pi^-$ distribution
- Fit of the residual and parameters

A narrow structure ($\Gamma \simeq 30 \ MeV$ and $M \simeq 1900 \ MeV$) observed by E687 in the 6 pions final state data of the diffractive photoproduction and possible interpretations

(P.L. Frabetti et al. Phys. Lett. B514 (2001) 240)

- Connection between photoproduction and e^+e^- annihilation
- Set of data and fit
- Properties of the dip
- Possible nature of the dip

A new analysis of sub-structures in the 4 pions final state of the E687 diffractive photoproduction

- (P. Lebrun Hadron '97, Aug. 25-30, 1997)
- Fit of the $\pi^+\pi^-$ distribution
- Fit of the $2\pi^+2\pi^-$ distribution
- Fit of the residual and parameters

Diffractive photoproduction data as source of information on the nature of the scalar meson f_0

A narrow structure ($\Gamma \simeq 30 \ MeV$ and $M \simeq 1900 \ MeV$) observed by E687 in the 6 pions final state data of the diffractive photoproduction and possible interpretations

(P.L. Frabetti et al. Phys. Lett. B514 (2001) 240)

- Connection between photoproduction and e^+e^- annihilation
- Set of data and fit
- Properties of the dip
- Possible nature of the dip

A new analysis of sub-structures in the 4 pions final state of the E687 diffractive photoproduction

(P. Lebrun Hadron '97, Aug. 25-30, 1997)

Fit of the $\pi^+\pi^-$ distribution

- Fit of the $2\pi^+2\pi^-$ distribution
- Fit of the residual and parameters

Diffractive photoproduction data as source of information on the nature of the scalar meson f_0

Conclusions

Naive Vector Meson Dominance

 $\sigma^{\rm diff}_{\gamma N \to VN} \propto \Gamma^{ee}_V$

Naive Vector Meson Dominance

 $\sigma^{\rm diff}_{\gamma N \to VN} \propto \Gamma^{ee}_V$

Naive Vector Meson Dominance

 $\sigma_{\gamma N \to VN}^{\rm diff} \propto \Gamma_V^{ee} \cdot \sigma_{VN \to VN}$

Naive Vector Meson Dominance

 $\sigma_{\gamma N \to VN}^{\rm diff} \propto \Gamma_V^{ee} \cdot \sigma_{VN \to VN}$

Naive Vector Meson Dominance

 $\sigma_{\gamma N \to VN}^{\rm diff} \propto \Gamma_V^{ee} \cdot \sigma_{VN \to VN}$

Since the cross section $\sigma_{VN \rightarrow VN}$ should vary slowly with M

$$\frac{1}{M^2} \cdot \frac{d\sigma_{\text{diff}}}{dM^2} \sum_{\gamma N \to VN} \propto \sigma_{e^+e^- \to V}(M)$$

$2\pi^+2\pi^-$ E687 data

$2\pi^+2\pi^-$ E687 weighted data compared to BaBar data

Evidence of a narrow resonance decaying in 6 pions

The E687 experiment observes a narrow dip with $M = (1911 \pm 4)MeV$ and $\Gamma = (29 \pm 11)MeV$

(P.L. Frabetti et al. Phys. Lett. B514 (2001) 240)

Evidence of a narrow resonance decaying in 6 pions

The E687 experiment observes a narrow dip with $M = (1911 \pm 4) MeV$ and $\Gamma = (29 \pm 11) MeV$ (P.L. Frabetti *et al.* Phys. Lett. **B514** (2001) 240)

The quantum numbers of this structure are $J^{PC} = 1^{--}, G = +1$ (6 pions) and I = 1.

Evidence of a narrow resonance decaying in 6 pions

The E687 experiment observes a narrow dip with $M = (1911 \pm 4) MeV$ and $\Gamma = (29 \pm 11) MeV$ (P.L. Frabetti *et al.* Phys. Lett. **B514** (2001) 240)

The quantum numbers of this structure are $J^{PC} = 1^{--}, G = +1$ (6 pions) and I = 1.

This dip is similar to that observed by the DM2 coll. with lower statistics, in the channels $e^+e^- \rightarrow 3\pi^+3\pi^$ and $e^+e^- \rightarrow 2\pi^+2\pi^-2\pi^0$.

DM2 data $e^+e^- \rightarrow 3\pi^+3\pi^-$

(DM2 "Fenice" Workshop, Frascati, 1988)

New fit 2BW+ **Jacob Slansky**

- ullet The data used are rescaled by the factor $1/M^2$
- A Breit-Wigner is added in the fit function to account the interference with the $\rho(1700)$

New fit 2BW +Jacob Slansky

Fit results

Decemenance	Mass		Width		$B_{ee}B_{3\pi^+3\pi^-}/M^2$			Phase
Resonances	(GeV/c ²)		(MeV/c ²)		(Yield/10 MeV)			(deg.)
V_0	1.910 ± 0	.010	37 ± 13		5 ± 1			10 ± 30
(V_1)	1.730 ± 0	.034 315		± 100		17 ± 3		140 ± 10
Background	c_0	<i>c</i> ₁		M_0		lpha	eta	Phase
	(GeV^{-1})	$(GeV^{1-\alpha})$		(GeV)			(GeV)	(deg.)
F_{JS}	84 ± 55	900 =	E 400	1.65 ± 0	.05	0	1.4 ± 0.2	0 (fixed)
$F_{JS}(M) = f_{JS}^2(M) = c_0 + c_1 \frac{e^{\frac{-\beta}{M-M_0}}}{(M-M_0)^{2-\alpha}} \qquad \frac{\chi^2}{dof} = 1.06$								
The Breit-Wigner added to the fit function is compatible with the well known $\rho(1700)$								

Fit results

Bacapapaca	Mass		Width		$B_{ee}B_{3\pi^+3\pi^-}/M^2$		Phase	
Resonances	(GeV/c ²)		(MeV/c^2)		(Yield/10 MeV)		(deg.)	
V_0	1.910 ± 0.010		37 ± 13		5 ± 1			10 ± 30
V_0 (PL B514 240)	1.911 ± 0.004		29 ± 11		5.8 ± 1.3		$\boxed{62\pm12}$	
(V_1)	1.730 ± 0	± 0.034		315 ± 100		17 ± 3		140 ± 10
Background	c_0 (GeV^{-1})	c_1 (GeV^1)	$1-\alpha$	M_0 (GeV)		α	eta (GeV)	Phase (deg.)
F_{JS}	84 ± 55	$900 \pm$	400	$1.65 \pm 0.$	05	0	1.4 ± 0.2	0 (fixed)
$F_{JS}(M) = f_{JS}^{2}(M) = c_{0} + c_{1} \frac{e^{\frac{-\beta}{M-M_{0}}}}{(M-M_{0})^{2-\alpha}} \qquad \qquad \frac{\chi^{2}}{dof} = 1.06$ In this case interference only with real background is compatible with the well known $\rho(1700)$							erference ackground	

This mixing mechanism produces a cross-section with a dip structure independent of the nature of V_0

$$\sigma \propto |A|^2 \propto \left| \frac{M^2 - M_0^2}{(M^2 - M_1^2)(M^2 - M_0^2) - a^2} \right|^2$$

Not a $N\overline{N}$ bound state

Since the dip mass (~ 1900 MeV) is similar to $2M_N$ this structure could be interpreted as a $N\overline{N}$ bound state.

Not a $N\overline{N}$ bound state

Since the dip mass (~ 1900 MeV) is similar to $2M_N$ this structure could be interpreted as a $N\overline{N}$ bound state.

Not a $N\overline{N}$ bound state

Since the dip mass (~ 1900 MeV) is similar to $2M_N$ this structure could be interpreted as a $N\overline{N}$ bound state.

The V_0 resonance could be interpreted as a hybrid $q\overline{q}g$ bound state.

The V_0 resonance could be interpreted as a hybrid $q\overline{q}g$ bound state.

The Flux-tube model (Isgur-Paton) predicts the existence of new species of hadrons called hybrids, who have both quark and gluonic (excited color flux tube) degrees of freedom in evidence.

The V_0 resonance could be interpreted as a hybrid $q\overline{q}g$ bound state.

- The Flux-tube model (Isgur-Paton) predicts the existence of new species of hadrons called hybrids, who have both quark and gluonic (excited color flux tube) degrees of freedom in evidence.
- Nonstrange hybrid mesons are predicted at $\sim 1.9 \ GeV$ (strange at $\sim 2.1 \ GeV$). Similar predictions come also from lattice calculations.

- The V_0 resonance could be interpreted as a hybrid $q\overline{q}g$ bound state.
- The Flux-tube model (Isgur-Paton) predicts the existence of new species of hadrons called hybrids, who have both quark and gluonic (excited color flux tube) degrees of freedom in evidence.
- Nonstrange hybrid mesons are predicted at $\sim 1.9 \ GeV$ (strange at $\sim 2.1 \ GeV$). Similar predictions come also from lattice calculations.
- These hybrids have small, but not vanishing, e.m. widths. The breaking mechanism of the strings forbids decay into identical mesons and imposes spin a parity of the products.

The V_0 resonance could be interpreted as a hybrid $q\overline{q}g$ bound state.

- The Flux-tube model (Isgur-Paton) predicts the existence of new species of hadrons called hybrids, who have both quark and gluonic (excited color flux tube) degrees of freedom in evidence.
- Nonstrange hybrid mesons are predicted at $\sim 1.9 \ GeV$ (strange at $\sim 2.1 \ GeV$). Similar predictions come also from lattice calculations.

These hybrids have small, but not vanishing, e.m. widths. The breaking mechanism of the strings forbids decay into identical mesons and imposes spin a parity of the products.

These selection rules in two-body decay, should favor high multiplicity channels and relative small widths (6π ???).

Fit and residual of $\pi^+\pi^-$ E687 data (S.P. Ratti, HEP, Jerusalem, 19-26 Aug. 1997)

The high sensibility of the E687 experiment permits to detect clearly the $\rho - \omega$ interference.

Fit and residual of $\pi^+\pi^-$ E687 data (S.P. Ratti, HEP, Jerusalem, 19-26 Aug. 1997)

The high sensibility of the E687 experiment permits to detect clearly the $\rho - \omega$ interference.

By subtracting the interference pattern the structure in the residual disappears.

Possible sub-structures in $2\pi^+2\pi^-$ final state

Possible sub-structures in $2\pi^+2\pi^-$ final state

New fit and residual of the $2\pi^+2\pi^-$ rescaled data (P. Lebrun Hadron '97, Aug. 25-30, 1997)

New fit and residual of the $2\pi^+2\pi^-$ rescaled data (P. Lebrun Hadron '97, Aug. 25-30, 1997)

Fit of the residual

(P. Lebrun Hadron '97, Aug. 25-30, 1997)

Fit of the residual

(P. Lebrun Hadron '97, Aug. 25-30, 1997)

Resonances	$\Gamma_{e^+e^-j}B_{j2\pi^+2\pi^-}(KeV)$	m(MeV)	$\Gamma(MeV)$	$\phi(rad)$
V_1	$(4 \pm 2) \times 10^{-2}$	1209 ± 6	218 ± 16	2.56 ± 0.04
V_2	$(5 \pm 2) \times 10^{-2}$	1465 ± 8	265 ± 23	4.26 ± 0.08
V_3	$(1.1 \pm 0.6) \times 10^{-3}$	1820 ± 25	100 ± 30	0.7 ± 0.6
V_4	$(3 \pm 2) \times 10^{-3}$	2030 ± 20	170 ± 80	2.6 ± 0.4
V_5	$(1.3 \pm 0.7) \times 10^{-3}$	2460 ± 24	190 ± 60	2.5 ± 0.3

Conclusions

The dip, found at $M \sim 1.9 \ GeV$ by E687 (P.L. Frabetti *et al.* Phys. Lett. **B514** (2001) 240), is investigated by means of a new fit function. Its nature appears consistent with a narrow resonance, strongly interfering with the vector meson $\rho(1700)$. A $N\overline{N}$ resonance is unlikely according to the negative result of OBELIX (Phys. Lett. **B527** (2002) 39).

An interpretation of this resonance as an 1^{--} , isovector hybrid is in agreement with expected mass, width and decay mode.

Conclusions

The dip, found at $M \sim 1.9 \ GeV$ by E687 (P.L. Frabetti *et al.* Phys. Lett. **B514** (2001) 240), is investigated by means of a new fit function. Its nature appears consistent with a narrow resonance, strongly interfering with the vector meson $\rho(1700)$. A $N\overline{N}$ resonance is unlikely according to the negative result of OBELIX (Phys. Lett. **B527** (2002) 39).

An interpretation of this resonance as an 1^{-} , isovector hybrid is in agreement with expected mass, width and decay mode.

We suggest the possible existence of some sub-structures in the 4π E687 photoproduction data (P. Lebrun Hadron '97, Aug. 25-30, 1997).

The interpretation of these structures in terms of resonances needs much more precise data.

With a statistics one order of magnitude bigger, such as the one foreseen for DA ϕ NE2, the secrets of this rich energy region could be revealed.