

K decays & Flavor Physics

Gino Isidori [INFN-Frascati]

Introduction

- The Flavor Saga
- Rare K decays & flavor physics
 - The flavor problem
 - $-K \rightarrow \pi \nu \nu$ decays
 - Rare *K* decays and the UT
 - $K \rightarrow ll(\pi)$ decays
- Semileptonic modes & precision low–energy physics
- Conclusions

THE FLAVOR SAGA:

'60-'70: golden age of kaon physics
'80 first *B*-physics era
2nd generation of ε'/ε measurements
'90 second *B*-physics era
'99-'01 direct CPV in the kaon system
'01-'03 CPV in the *B* system

THE FLAVOR SAGA:

'60-'70: golden age of kaon physics
'80 first *B*-physics era
2nd generation of ε'/ε measurements
'90 second *B*-physics era
'99-'01 direct CPV in the kaon system
'01-'03 CPV in the *B* system

... theoretically-clean and experimentally-easy observables at B factories almost exhausted...

renewed interest in kaon physics

MARK HANKLE - HANRESON FORD - CARRIE HISHER BILLY THE WALLANDS - ANTHONY DAVIES S BICHNER MARKANS - HOWARD CARAMELIN BICHNER LICAS - HOWARD CARAMELING BICHNER LICAS - JOHN WILLIAMS

THE FLAVOR SAGA:

'60-'70: golden age of kaon physics
'80 first *B*-physics era
2nd generation of ε'/ε measurements
'90 second *B*-physics era
'99-'01 direct CPV in the kaon system
'01-'03 CPV in the *B* system

THE RETURN OF KAON PHYSICS:

- Search of NP in flavor dynamics via rare K decays
- Tests of CPT at unprecedented level of precision (~ M_K/M_{Planck})
- Improved understanding of low–energy QCD (CHPT vs. Lattice–QCD) & precise determination of fundamental SM couplings ($m_{u,d,s}$, V_{us} , $\langle qq \rangle$, ...)

Rare K decays & Flavor Physics

The SM can be considered as the *renormalizable part* of an effective field theory, valid up to a (still undetermined) cut–off scale Λ :

Quark-flavor mixing is a key ingredient to understand the symmetry-breaking sector of the SM and, possibly, to provide an indirect indication about the value of Λ

Rare processes are interesting when the suppression of the transition is associated to some (hopefully broken...) conservation law [e.g.: $\mathcal{B} \Leftrightarrow p \text{ decay}, \mathcal{L} \Leftrightarrow 2\beta 0\nu, ...$]

Flavor Changing Neutral Currents [especially & FCNC]

are the ideal candidates to study in detail the breaking of the (approximate) flavor symmetry of the SM

no tree–level contribution within the SM

Ikely to be dominated by short-distance dynamics [key point]

precise determination of flavor mixing within the SM [e.g.: V_{td}] enhanced sensitivity to physics beyond the SM [$O^{(6)} \Rightarrow \Lambda$]

The Flavor Problem:

Available data on $\Delta F=2$ FCNC amplitudes (meson-antimeson mixing) already provides serious constraints on the scale of New Physics...

e.g.: $K^0 - \overline{K}^0$ mixing \downarrow $\Lambda \ge 100 \text{ TeV}$ for $O^{(6)} \sim (\overline{s}d)^2$

much more severe than bounds on the scale of flavor–conserving operators from e.w. precision data

...while a natural stabilization of the Higgs potential $\Rightarrow \Lambda \sim 1 \text{ TeV}$

After the recent precise data from *B* factories, it is more difficult [although not impossible...] to believe that this is an accident

Two possible solutions:

• <u>pessimistic</u> [very unnatural]: $\Lambda > 100 \text{ TeV}$

⇒ almost nothing to learn from other FCNC processes (but also very difficult to find evidences of NP at LHC...)

• <u>natural</u>: $\Lambda \sim 1 \text{ TeV} + \text{flavor-mixing protected by additional symmetries}$ $<math>\Rightarrow$ still a lot to learn from <u>rare decays</u>

- Present fit of the CKM unitarity triangle involve only two types of amplitudes sensitive to NP: K-K mixing and B-B mixing ($\Delta F=2$ transitions only) \Rightarrow we known very little yet about $\Delta F=1$ transitions
- Present CKM fits provide only a consistency check of the SM hypothesis but do not provide a bound on the NP parameter space ⇒ only with the help of rare decays we can study the underlying flavor symmetry in a model-independent way

$$\mathscr{L} = \mathscr{L}_{gauge}(A_i, \Psi_i) + \mathscr{L}_{Higgs}(\phi, \Psi_i, \mathbf{V}) + \Sigma_i \frac{C_i}{\Lambda^2} O_i^{(6)} + \dots$$

Anatomy of a typical $O_i^{(6)}$ relevant to FCNC rare decays:

$$Q_{\gamma}^{bs} = W_{\gamma}^{bs} D_{R}^{b} \sigma_{\mu\nu} F^{\mu\nu} H Q_{L}^{s} \sim m_{b} b_{R} \sigma_{\mu\nu} F^{\mu\nu} s_{L}$$

flavor coupling

e.g.: $W_{\gamma}^{bs} \sim y_b y_t^2 V_{tb}^* V_{ts}$ for the SM short–distance contr.

The most restrictive choice is the so-called MFV hypothesis [= same CKM/Yukawa suppress. as in the SM] it cannot be worse than this without serious fine-tuning problems

[Chivukula & Georgi, '89; Buras *et al.* '00; D'Ambrosio,Giudice, G.I., Strumia '02]

flavor-blind structure

Limited number of independent terms once we impose $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge invariance

closely related to specific loop topologies, e.g.:

 $D_R \sigma_{\mu\nu} F^{\mu\nu} H Q_L \sim$

	$b \rightarrow s$	$b \rightarrow d$	$s \rightarrow d$
$\Delta F=2$ box	$\Delta M_{Bs} \\ A_{CP}(B_s \rightarrow \psi \phi)$	ΔM_{Bd} $A_{CP}(B_d \rightarrow \psi K)$	$\Delta M_{K}, \epsilon_{K}$
$\Delta F=1$ 4-quark box	$B_d \rightarrow \phi K, B_d \rightarrow K\pi, \dots$	$B_d \rightarrow \pi \pi, B_d \rightarrow \rho \pi,$	ε'/ε, K→3π,
gluon penguin	$B_{d} \rightarrow X_{s} \gamma, B_{d} \rightarrow \phi K,$ $B_{d} \rightarrow K \pi, \dots$	$B_d \rightarrow X_d \gamma, B_d \rightarrow \pi \pi, \dots$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^+ l^-, \dots$
γ penguin	$B_{d} \rightarrow X_{s} l^{\dagger} l, B_{d} \rightarrow X_{s} \gamma$ $B_{d} \rightarrow \phi K, B_{d} \rightarrow K\pi, \dots$	$B_{d} \rightarrow X_{d} l^{\dagger} l^{\dagger}, B_{d} \rightarrow X_{d} \gamma$ $B_{d} \rightarrow \pi \pi, \dots$	$\varepsilon'/\varepsilon, K_L \rightarrow \pi^0 l^+ l^-, \dots$
Z ⁰ penguin	$B_{d} \rightarrow X_{s} l^{\dagger} l, B_{s} \rightarrow \mu \mu$ $B_{d} \rightarrow \phi K, B_{d} \rightarrow K \pi, \dots$	$B_{d} \rightarrow X_{d} l^{\dagger} l^{-}, B_{d} \rightarrow \mu \mu$ $B_{d} \rightarrow \pi \pi, \dots$	ε'/ε, $K_L \rightarrow \pi^0 l^+ l^-$, $K \rightarrow \pi \nu \nu$, $K \rightarrow \mu \mu$,
H ⁰ penguin	$B_s \rightarrow \mu \mu$	$B_d \rightarrow \mu \mu$	$K_{L,S} \rightarrow \mu \mu$

		decreasing SM contrib.		
		$b \rightarrow s ~(\sim \lambda^2)$	$b \rightarrow d (\sim \lambda^3)$	$s \rightarrow d (\sim \lambda^5)$
	$\Delta F=2$ box	$\Delta M_{Bs} = A_{CP}(B_s \rightarrow \psi \phi)$	ΔM_{Bd} $A_{CP}(B_d \rightarrow \psi K)$	$\Delta M_{K}, \epsilon_{K}$
decrea- sing SM contrib.	$\Delta F=1$ 4–quark box	$B_d \rightarrow \phi K, B_d \rightarrow K \pi,$	$B_d \rightarrow \pi \pi, B_d \rightarrow \rho \pi,$	ε'/ε, K→3π,
	gluon penguin	$B_d \rightarrow X_s \gamma, \ B_d \rightarrow \phi K, \ B_d \rightarrow K\pi, \dots$	$B_d \rightarrow X_d \gamma, B_d \rightarrow \pi \pi, \dots$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^+ l^-, \dots$
	γ penguin	$B_{d} \rightarrow X_{s} l^{\dagger} l, B_{d} \rightarrow X_{s} \gamma$ $B_{d} \rightarrow \phi K, B_{d} \rightarrow K\pi, \dots$	$\begin{split} & \mathbf{B}_{\mathbf{d}} {\rightarrow} \mathbf{X}_{\mathbf{d}} l^{+} l^{-}, \mathbf{B}_{\mathbf{d}} {\rightarrow} \mathbf{X}_{\mathbf{d}} \boldsymbol{\gamma} \\ & \mathbf{B}_{\mathbf{d}} {\rightarrow} \pi \pi, \dots \end{split}$	$\varepsilon'/\varepsilon, K_{L} \rightarrow \pi^{0} l^{+} l^{-},$
	Z ⁰ penguin	$B_{d} \rightarrow X_{s} l^{\dagger} l, B_{s} \rightarrow \mu \mu$ $B_{d} \rightarrow \phi K, B_{d} \rightarrow K \pi, \dots$	$B_{d} \rightarrow X_{d} l^{\dagger} l^{-}, B_{d} \rightarrow \mu \mu$ $B_{d} \rightarrow \pi \pi, \dots$	$\varepsilon'/\varepsilon, K_{L} \rightarrow \pi^{0} l^{+} l^{-},$ $K \rightarrow \pi \nu \nu, K \rightarrow \mu \mu,$
	H ⁰ penguin	$B_s \rightarrow \mu \mu$	$B_d \rightarrow \mu\mu$	$K_{L,S} \rightarrow \mu\mu$

		decreasing SM contrib.		
		$b \rightarrow s ~(\sim \lambda^2)$	$b \rightarrow d (\sim \lambda^3)$	$s \rightarrow d (\sim \lambda^5)$
	$\Delta F=2$ box	$\Delta M_{Bs} \\ A_{CP}(B_s \rightarrow \psi \phi)$	ΔM_{Bd} $A_{CP}(B_d \rightarrow \psi K)$	$\Delta M_{K}, \epsilon_{K}$
	$\Delta F=1$ 4–quark box	$\mathbf{B}_{d} \rightarrow \phi \mathbf{K}, \mathbf{B}_{d} \rightarrow \mathbf{K} \pi, \ldots$	$B_d \rightarrow \pi \pi, B_d \rightarrow \rho \pi,$	ε'/ε, K→3π,
decrea- sing SM contrib.	gluon penguin	$\begin{split} & \mathbf{B}_{d} \rightarrow \mathbf{X}_{s} \boldsymbol{\gamma}, \ \mathbf{B}_{d} \rightarrow \boldsymbol{\varphi} \mathbf{K}, \\ & \mathbf{B}_{d} \rightarrow \mathbf{K} \pi, \dots \end{split}$	$B_d \rightarrow X_d \gamma, B_d \rightarrow \pi \pi,$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^+ l^-, \dots$
	γ penguin	$\begin{split} & \mathbf{B}_{\mathrm{d}} {\rightarrow} \mathbf{X}_{\mathrm{s}} l^{\dagger} l^{\dagger} , \mathbf{B}_{\mathrm{d}} {\rightarrow} \mathbf{X}_{\mathrm{s}} \gamma \\ & \mathbf{B}_{\mathrm{d}} {\rightarrow} \phi \mathbf{K}, \mathbf{B}_{\mathrm{d}} {\rightarrow} \mathbf{K} \pi, \dots \end{split}$	$\begin{split} & \mathbf{B}_{\mathrm{d}} {\rightarrow} \mathbf{X}_{\mathrm{d}} l^{\dagger} l^{\dagger} , \mathbf{B}_{\mathrm{d}} {\rightarrow} \mathbf{X}_{\mathrm{d}} \gamma \\ & \mathbf{B}_{\mathrm{d}} {\rightarrow} \pi \pi, \dots \end{split}$	$\epsilon^{\circ}/\epsilon, \ K_{L} \rightarrow \pi^{0} l^{+} l^{-}, \ \dots$
	Z ⁰ penguin	$B_{d} \rightarrow X_{s} l^{\dagger} l, B_{s} \rightarrow \mu \mu$ $B_{d} \rightarrow \phi K, B_{d} \rightarrow K \pi, \dots$	$B_{d} \rightarrow X_{d} l^{\dagger} l^{-}, B_{d} \rightarrow \mu \mu$ $B_{d} \rightarrow \pi \pi, \dots$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^+ l^-, K \rightarrow \pi \nu \nu, K \rightarrow \mu \mu, \dots$
	H ⁰ penguin	$B_s \rightarrow \mu \mu$	$B_d \rightarrow \mu \mu$	$K_{L,S} \rightarrow \mu \mu$

Theoretical errors $\leq 10\%$

			decreasing SM	contrib.
		$b \rightarrow s ~(\sim \lambda^2)$	$b \rightarrow d (\sim \lambda^3)$	$s \rightarrow d (\sim \lambda^5)$
	$\Delta F=2$ box	$ \begin{array}{c} \Delta M_{Bs} \\ A_{CP}(B_{s} \rightarrow \psi \phi) \end{array} $	$ \begin{array}{c} \Delta M_{Bd} \\ \hline A_{CP}(B_d \rightarrow \psi K) \end{array} $	$\Delta M_{K}, \epsilon_{K}$
decrea- sing SM contrib.	$\Delta F=1$ 4–quark box	$(\mathbf{B}_{d} \rightarrow \mathbf{\phi} \mathbf{K}) \mathbf{B}_{d} \rightarrow \mathbf{K} \pi, \dots$	$B_d \rightarrow \pi \pi, B_d \rightarrow \rho \pi, \dots$	ε'/ε, K→3π,
	gluon penguin	$ \begin{array}{c} B_d \rightarrow X_s \gamma \\ B_d \rightarrow K \pi, \dots \end{array} $	$B_d \rightarrow X_d \gamma, B_d \rightarrow \pi \pi,$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^+ l^-, \dots$
	γ penguin	$ \begin{array}{c} B_{d} \rightarrow X_{s} l^{\dagger} l \\ B_{d} \rightarrow \phi K \\ B_{d} \rightarrow K \pi, \dots \end{array} $	$\begin{array}{c} \mathbf{B}_{d} \rightarrow \mathbf{X}_{d} \ l^{\dagger} l^{\dagger} l^{\dagger}, \ \mathbf{B}_{d} \rightarrow \mathbf{X}_{d} \ \boldsymbol{\gamma} \\ \mathbf{B}_{d} \rightarrow \pi \pi, \ \dots \end{array}$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^+ l^-, \dots$
	Z ⁰ penguin	$ \begin{array}{c} B_{d} \rightarrow X_{s} l^{\dagger} l \\ B_{d} \rightarrow \phi K B_{d} \rightarrow K \pi, \dots \end{array} $	$B_{d} \rightarrow X_{d} l^{\dagger} l^{\dagger}, B_{d} \rightarrow \mu \mu$ $B_{d} \rightarrow \pi \pi, \dots$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^+ l^-, K \rightarrow \pi \nu \nu, K \rightarrow \mu \mu, \dots$
	H ⁰ penguin	$B_s \rightarrow \mu \mu$	$B_d \rightarrow \mu \mu$	$K_{L,S} \rightarrow \mu \mu$
$\bigcirc = \exp. \operatorname{error} \sim 10\% \qquad \bigcirc = \exp. \operatorname{error} \sim 100\%$				

$K \rightarrow \pi \nu \nu \ decays:$

I. Theoretical predictions within the SM

Thanks to the so-called *"hard"* GIM mechanism these decays are largely dominated by short-distance dynamics:

$$\bigvee_{d} \bigvee_{d} \bigvee_{q} \bigvee_{q$$

$$\blacktriangleright \mathcal{H}_{eff} = \frac{G_F \alpha}{2\sqrt{2\pi s_W^2}} \left[\lambda_c X_c + \lambda_t X_t \right] \left(\overline{s} d \right)_{V-A} \left(\overline{v} v \right)_{V-A}$$

 X_i @ NLO:

Buchalla & Buras '94 Misiak & Urban '99

N.B.: the hadronic matrix element $\langle \pi | (sd)_{V-A} | K \rangle$ is known from K_{l3} with excellent accuracy Marciano & Parsa, '96

II. Status of $\Gamma(K \rightarrow \pi \nu \nu)$ measurements

$$B\left(K^{+} \rightarrow \pi^{+} \nu \,\overline{\nu}\right) = \left(1.57^{+1.75}_{-0.82}\right) \times 10^{-10}$$

- 2 events observed by BNL-E787 (with 0.15 bkg.)
- result compatible with SM expectations (central value 2×SM...)

• No dedicated experiment on $K_L \to \pi^0 \nu \nu$ has started yet present best limit: $B(K_L \to \pi^0 \nu \nu) < 0.59 \times 10^{-6}$ KTeV '99 [using $\pi^0 \to \gamma e^+ e^-$]

III. $K \rightarrow \pi \nu \nu$ beyond the SM

10

Two basic scenarios:

A) Models with Minimal Flavor Violation [the pessimistic perspective...]

⇒ same CKM suppression as in the SM [$A(s \rightarrow dvv) \propto V_{ts}V_{td} \sim \lambda^5$]

Within this framework the effects are naturally not very large (maximal ehancements up to ~ 50–60%) but $B(K \rightarrow \pi \nu \nu)$ measur. would still be very useful if one can reach the SM level:

B) Models with new sources of flavor mix. [the optimistic perspective]

 $u_{L}^{(1)}$

W

 $u_R^{(3)}$

 $u_L^{(2)}$

large effects posssible [no λ^5 suppression] in several specific frameworks.

Nir & Worah, '97 Buras, Silvestrini & Romanino, '97 Colangelo & G.I, '98

Model-independent bound:
$$\Gamma(K_L \to \pi^0 \nu \nu) < \Gamma(K^+ \to \pi^+ \nu \nu)$$

[Grossman & Nir, '97]
 $\Rightarrow B(K_L \to \pi^0 \nu \nu) < 1.8 \times 10^{-9}$ [90% C.L.]

e.g.: MSSM with

non–universal A terms

 $(V_{ts}^*m_t) \times (V_{td}^*m_t)$

Two orders of magnitudes above the SM: a wide unexplored region of possible exciting new phenomena...

Rare K decays & the Unitarity Triangle:

Summer 2003 Status.

Possible future evolution (if we are lucky enough...)

 $B(K_L \to \pi^0 \nu \nu) = (1.1 \pm 0.3) \times 10^{-10} \approx 4 \times SM \iff \text{even exp. searches with}$ SES ~ 10⁻¹⁰ would be very welcome & useful !

A scenario of this type is far from being excluded at present:

- it could become a rather probable scenario if Belle's hint of a huge difference between $A_{CP}(B \rightarrow \phi K_S)$ and $A_{CP}(B \rightarrow \psi K_S)$ is confirmed....
- but it would remain an open possibility even in absence of significant NP effects at *B* factories

The significance of rare-kaon-decay measurements becomes even more clear if we look at CKM unitarity triangles from a different perspective:

The (usual) $b \rightarrow d$ triangle:

$$V_{ub}^{*}V_{ud} + V_{cb}^{*}V_{cd} + V_{tb}^{*}V_{td} = 0$$

The (kaon)
$$s \rightarrow d$$
 triangles

$$V_{us}^* V_{ud} + V_{cs}^* V_{cd} + V_{ts}^* V_{td} = 0$$

Same area (not in scale !)

 $b \rightarrow d \& s \rightarrow d$ unitarity triangles on the same scale

 \Rightarrow large negative values of $\rho \ [\rho \leq -0.5]$ are certainly disfavoured

 \Rightarrow very difficult to improve these limits

 $["S": 2\gamma, J=2] \quad K_L \to \pi^0 e^+ e^-$

Long-distance effects small & under control thanks to recent NA48 results \Rightarrow realistic hope to disentangle the short-distance CP-violating dynamics The 3 components of the $K_L \rightarrow \pi^0 e^+ e^-$ amplitude: [long-distance 1 γ -exchange suppressed by CP]

A. direct CPV amplitude \checkmark B. indirect CPV short-distance dominated, very similar to $K_{\rm L} \rightarrow \pi^0 vv$ determined by $B(K_S \rightarrow \pi^0 e^+ e^-) = 5 \times 10^{-9} |a_S|$ $a_S \sim O(1)$ from naïve dim. analysis $B_{\rm CPV} = \left[16 |a_S|^2 \pm 6.2 |a_S| \left(\frac{\Im \lambda_t}{10^{-4}} \right) + 2.4 \left(\frac{\Im \lambda_t}{10^{-4}} \right)^2 \right] \times 10^{-12}$ $(\Im \lambda_t)_{SM} = \Im (V_{ts}^* V_{td}) \approx 1.3 \times 10^{-4}$

C. CPC amplitude

K_L

no interference; different Dalitz Plot; strong constraints from $K_{\rm L} \rightarrow \pi^0 \gamma \gamma$ @ low $M_{\gamma \gamma}$

 $B_{\rm CPC} \sim 10^{-12}$

The 3 components of the $K_L \rightarrow \pi^0 e^+ e^-$ amplitude: [long–distance 1 γ –exchange suppressed by CP]

- A. direct CPV amplitude \checkmark short–distance dominated, very similar to $K_{I} \rightarrow \pi^{0} \nu \nu$
- large interf. between direct
 & indirect CPV
- positive interf. strongly favoured
- CPC component negligible

[Buchalla, D'Ambrosio, G.I '03]

→ B. indirect CPV

determined by $B(K_S \rightarrow \pi^0 e^+ e^-) = 5 \times 10^{-9} |a_S|$

$$B(K_{\rm S} \rightarrow \pi^0 e^+ e^-) = (5.8^{+2.8}_{-2.3} \pm 0.3 \pm 0.8) \times 10^{-9}$$

NA48 '02

$$B_{\rm SM} = B_{\rm CPV} = 3.2^{+1.2}_{-0.8} \times 10^{-11}$$

$$B(K_{\rm L} \rightarrow \pi^0 e^+ e^-) < 2.8 \times 10^{-10}$$
 [90% CL]
KTeV '03 (prelim.)

no interference; different Dalitz Plot; strong constraints from $K_{\rm L} \rightarrow \pi^0 \gamma \gamma$ @ low M_{$\gamma\gamma$} $B(K_{\rm L} \rightarrow \pi^0 \gamma \gamma, M_{\gamma\gamma} < 110 \text{ MeV}) < 0.9 \times 10^{-8}$ [90% CL]

 $B_{CPC} < 3 \times 10^{-12}$

- Irreducible th. error ~ 10% [not as clean as $K_L \rightarrow \pi^0 \nu \nu$, but still very interesting]
- Different sensitivity to NP with respect to $K_{\rm L} \rightarrow \pi^0 \nu \nu$
- Clean exp. signature, but irreducible physics bkg from $K_{\rm L} \rightarrow e^+ e^- \gamma \gamma ~ [\Rightarrow \rm KTeV]$
- $K_{\text{L,S}} \rightarrow \pi^0 e^+ e^-$ time-interf. \Rightarrow useful handle against Greenle's bkg.

Semileptonic modes & precision low–energy physics

Kaon decays and, in particular, the semileptonic modes $K \to (n\pi)+l\nu$ offer an ideal framework for precision measurements of fundamental SM couplings such as light-quark masses, the CKM angle V_{us} , the quark condensate and, more in general, for precision studies of the low-energy realization of QCD

 \Rightarrow <u>The 2nd Dappe Physics Handbook</u>

Two examples: K_{l3} & K_{l4} decays

I. K_{l3} decays and the Cabibbo angle

 $\Gamma = G_F^2 M_K^5 \times |\mathbf{V}_{us}|^2 \times |f_+(0)|^2 \times I(df/dt) \checkmark$

vector form factor at zero momentum transfer [$t=(p'-p)^2=0$] kinematical integral: mild sensitivity to df_+/dt (and f_-/f_+ for $l=\mu$) and e.m. corrections

 $\text{CVC} \Rightarrow f_+(0) = 1$ in the SU(3) limit $m_s = m_u = m_d$

The extraction of $|V_{us}|$: $(\Delta V_{us})_{today} = (\sim 1\%)_{exp} + (0.8)\%_{th.-f(0)}$

is rather confused [large SU(2) breaking= wrong th. corrections, or bad data?]...

...but in a short–time, [with the help of KLOE data on both modes], we shoud be able to clarify it.

uncertainty dominated by the th. error on f(0)?

With a substantial increase of statistics (~10×) the error on f(0)could be controlled by means of the quadratic slopes of $K_{\mu3}$ modes II. K_{l4} and $\pi\pi$ phase shifts

$$K^+ \rightarrow (\pi^+ \pi^-) l^+ \nu$$
 form factors: $F_i(s) = f_i^o(s) e^{i \delta_0^0(s)} + \dots$ strong $\pi \pi$ phases

possible to isolate the contribution of the δ 's by looking at the *asymmetry* in the distribution of the angle between $\pi\pi$ and $l\nu$ planes

 $\pi\pi$ phase shifts near thresholds [$\Leftrightarrow a_J^I$ scattering lengths] are among the most precise observables we can compute in CHPT, and also among the most interesting ones [a_0^0 strongly depends from the beahaviour of $\langle 0|\bar{q}q|0\rangle$ in the chiral limit]:

$$\delta_0^0(s) \Leftrightarrow a_0^0 = \begin{bmatrix} 0.16 & O(p^2) & \text{Weinberg '79} \\ 0.20 \pm 0.01 & O(p^4) & \text{Gasser \& Leutwyler '83} \\ 0.220 \pm 0.005 & O(p^6) & \text{Bijens, Colangelo, Ecke} \\ \text{Ananthanarayan et al '0} \end{bmatrix}$$

Bijens, Colangelo, Ecker, Gasser & Leutw. '99 Ananthanarayan *et al.* '01 A recent measurement by BNL–E865 [hep–hp/0301040] as provided an important check of CHPT expectations:

$$a_0^0 = 0.216 \pm 0.013$$

BNL–E865 [+ th. contsr. on a_2]

$$a_0^0 = 0.220 \pm 0.005$$

CHPT [+ disp. relations]

but the precison of the theory could allow even more significant tests...

if it was not clear yet...

I'm strongly in favor of the high-luminosity option!

Highlights of the kaon-physics program @ Φ -factory vs. luminosity:

I'm strongly in favor of the high-luminosity option!

and if the option is realistic I'm ready to defend it...

