

Glueballs and hybrids in the 1-2 GeV region: an experimental overview

Alessandra Filippi, INFN Torino

Workshop on e⁺e⁻ in the 1-2 GeV region Alghero, 12.09.03

Outline of the talk

- Theoretical discussion of glueballs and hybrids properties: previous talk
- Experimental observations for the identification of the most important candidates for such structures
 - Glueballs: 0++ sector
 - f₀(1500), f₀(1300), f₀(1710)
 - Footprints can be seen "by eye" in Dalitz plots bands
 - Hybrids: 1-+
 - ?₁(1400), ?₁(1600)
 - Some hints about exotic structures in the vector sector

The problem of the scalar mesons sector

- The data collected so far show that there are far too many scalars in the ground 0⁺⁺ nonet for all of them to be compatible with a quarkonia structure:
 - Two a₀(980) and a₀(1450) isovectors instead of one only;
 - At least four isoscalar instead of two:
 - f₀(400-1200) ? ?, f₀(980), f₀(1300), f₀(1500) and (maybe) f₀(1710)
 - K*(1430) fills the 1/2 state
- A number of open problems still exist:
 - What is ??
 - Clear signatures of its existence
 - $f_0(980)$ and $a_0(980)$ nature still uncertain
 - 4-quarks (? radiative decays favor this hypothesis) or KK molecular states
 - Probably (at least) one glueball enters the spectrum of the scalar mesons
 - Main signatures for a glueball:
 - Flavor blindness in its decay modes
 - Absence of coupling to real photons

f₀(1500): first observations

- 1st observation in 3?⁰, 2?-?⁺ annihilation, bubble chamber data (1983, 1989)
 - Does not decay in KK, in contrast to f₂'(1525)
 - Spin 0 hypothesis cautiously suggested
 - 2⁺⁺ identified later
 - f₂(1565): <u>NN</u> quasi-bound state?
- GAMS (1983): scalar state decaying in ?? and ??' at 1590 in ?⁻p ? known as G(1590)
 - Not decaying to ??
 - Slightly higher mass and width (~250 MeV)

f₀(1500): further confirmations in ?? and ?? at higher energies

- E760, Fermilab (1992)
- E687, Fermilab (1997)
 - D[?]_S??????
 - ?+?- decay
 - m=1475, ??100 MeV
 - c? s Cabibbo favoured:
 - f₀(1500) must have a non vanishing ss component in its wave _____ function and therefore decay also to KK

- VES (1996):
 - ?⁻p ? ?⁻??, ?⁻??' @ 36 GeV/c
 - Production of ? (1800) decaying to f₀(1500)?⁻, and f₀(1500) ? ??, ??'

f₀(1500): confirmations in ?? and ?? decay channels – CRYSTAL BARREL

3.

2

0 -

 $\mathbb{m}^2_{x^0x^0}$

• CRYSTAL BARREL:

- pp annihilation at rest
 - ?? decay (1992)
 - ?⁰?⁰ decay (1995)
 - 4? decay observed
 - K_LK_L decay observed
- Confirmed by recent data in flight at different p momenta between 1350 and 1940 MeV/c

f₀(1500): confirmations in ?? and KK decay channels - OBELIX

• OBELIX:

- pp? ?+?-?⁰ annihilation at rest at different target densities
- np? ?+?+?- annihilation in flight with p_n < 400 MeV/c
- np? 3?+2?- annihilation in flight

$f_0(1500)$: observations in kaonic channels

- ٠
 - pp? K+K-?0
 - **n**p? K+K-?+

- **OBELIX, CERN:** WA102, CERN:
 - pp central production at 450 GeV
 - K⁺K⁻ decay
 - K_SK_S decay
 - ? +? & ? 0? 0 decays confirmed, and this mode is favored over KK
 - $f_0(1500)$ does not seem to have a large ss component

- E690, Fermilab: pp central production
 - at 800 GeV: pp? K_sK_spp
 - Twofold ambigui-• ty between 0⁺⁺ and 2⁺⁺ above 1550 MeV

f₀(1500) in ?? interactions?

- ?? interactions are anti-glueball filters since gluons do not couple directly to ?
 - glueball production should be suppressed in these reactions
- LEP: L3 (1999)
 - 3 peaks on K_LK_L observed below 2 GeV
 - $f_2(1270) + a_2(1320) + f_2'(1525)$
 - f₀(1500) is missing
- LEP: ALEPH (1999)
 - In ??? ?+?- no f₀(1500) is observed
 - ? _{??} ? 0.17 KeV
 - To be compared with a typical width of a nn scalar meson like f₀(1370): 4 KeV

f₀(1500): is it really flavor blind?

- Its absence in ?? collisions suggests a large gluonic component in the wave function
- Important to check its branching ratios for the decay into mesons with different flavor content

$$R ? \frac{B.R.(f_0(1500) ? K\overline{K})}{B.R.(f_0(1500) ? ??)}$$

- **OBELIX**:
 - 0.24?0.04 ¹S₀
 - 0.30?0.04 ³P₁
- WA102: (0.33?0.03?0.07)
- CRYSTAL BARREL: (0.138?0.038)
 - A value of the ratio less than 0.3 indicates that a possible ss component is not dominant

A second glueball candidate? f₀(1710)

- Long debate about its spin: is it 0⁺⁺ or 2⁺⁺?
 - MARK III & WA102 (observations in ??, and K+K-) confirm that it is a scalar structure
- Structure?
 - ss meson in the scalar nonet still missing
 - Expected beyond 1600 MeV
 - Should have favoured decays into mesonic channels
 - Not observed in pp annihilations: in agreement with ss structure due to OZI?
 - Not observed by CRYSTAL BARREL

Exotic mesons produced in ?-p interactions

- Several experimental hints at the presence of two exotic
 - 1-+ mesons have been found in ?-p interactions at intermediate energies studied at KEK, IHEP/Protvino and BNL
 - The produced mesons are mediated by Reggeon exchanges with recoil nucleons, so they can be either isoscalar or isovector, con

Confirmation of the observations in pp annihilation reactions

The 1⁻⁺ exotic: general features

- J^{PC} = 1⁻⁺ are exotic quantum numbers not accessible to simple quarkonia states
- Several models predict the presence of a (nn+g) meson in the (1.4?2) GeV range
 - Predicted masses and decay branching ratios are fairly model dependent
 - Flux tube model:
 - Mass around 1.9 GeV
 - Dominant decays: b₁(1235)? , f₁(1285)?
 - Di-quark cluster model:
 - Mass around 1.4 GeV
 - Dominant decay: ??
 - QCD sum rule calculations:
 - Mass in the (1.4?1.6) GeV range
 - Dominant decay: ??

The lightest 1⁻⁺ state: ?₁(1400) First observations

- First observation by GAMS (IHEP-CERN) in the reaction ?-p? ?⁰?n @ 100 GeV/c
 - Forward-backward asymmetry of angular distributions in the ?⁰? system suggest a swing in the a₂(1320) region
 - Strong interference between even/odd waves
 - PW analysis: D₀ and P₀ waves are resonant close to a₂(1320)
 - Dominant decay channel for both a₂(1320) and ?₁(1400) is b₁(1235)?, due production via unnatural parity exchange

- Second observation by E179 at KEK in the reaction
 - ?-p? ?-?p @ 6.3 GeV/c
 - Observed in the ?-? system
 - PW analysis: D₁ and P₁ waves peak in the a₂(1320) region:
 - f₂ and ? exchange play a dominant role
 - Both the waves have a resonant behavior

The lightest 1⁻⁺ state: ?₁(1400) the observations by BNL-E852

- Systematic study of the reactions
 - **?-p? ?-?p** and
 - **?-p? ?**⁰**? n** *@* 18 GeV/c
 - The ?? spectrum shows a strong a₂(1320) signal with a typical peripheral production
 - The relative phase motion of P₊ wave with respect to a₂(1320) requires the presence of a resonant P wave ?₁(1400) state

$$M = (1359^{+16+10}_{-14-24}) \text{ MeV},$$

$$? = (314^{+31+9}_{-29-66}) \text{ MeV}$$

The lightest 1⁻⁺ state: ?₁(1400) the observations by VES

- Systematic study of the reactions
 ?-N? ?-?N, ?-?'N
 @ 37 GeV/c
 - The ?₁(1400) signal is present in the ?? channel but it is small and with large errors
 - The phase motion is similar to that of BNL data
 - They don't claim for any significant 1⁻⁺ state to have been observed in the 1.3-1.4 GeV region

The lightest 1⁻⁺ state: ?₁(1400) the observations by CRYSTAL BARREL

- Study of the annihilation reactions at rest
 - pn? ?-?º? and
 - **p**p? ?⁰?⁰?
 - The decays of ? and ? into ?? and of a₂(1320) into ?? are not enough to describe correctly the data
 - The presence of a ?₁(1400) meson, decaying into ??, is needed

M = (1400?20?20) MeV, $? = (310?50^{+50}_{-30}) MeV$

M=(1360?25) MeV, ?=(220?90) MeV

The heaviest 1⁻⁺ state: ?₁(1600) the observation by BNL-E852 in 3?

- State reported in ?'? and ?? channels
- Study of the 3? system by E852 in the reaction
 ?-p? ?+?-? p @ 18 GeV/c with 0.05<-t<1 (GeV/c)² momentum transfer
 - Found a 1⁻⁺ state at 1600 with the phase motion peculiar of a resonance with respect of all other partial waves

The heaviest 1⁻⁺ state: ?₁(1600) the observation by BNL-E852 in ?'?

- Study of the ?'? system by E852 in the reaction
 ?-p? ?'?-p @ 18 GeV/c
 with 0.06<|t|<2.5 (GeV/c)² momentum transfer
 - PW analysis: the most dominant waves are P₊ and D₊
 - Found a 1⁻⁺ state at 1600 with the phase motion peculiar of a resonance
 - Two D waves in interference (one of them is the a₂(1320))

The heaviest 1^{+} state: $?_1(1600)$

the observations by VES in ?'? and other channels

- Study of the reaction ?-N? ?-?'N
 @ 37 GeV/c
 - A coupled channel analy shows the presence of ?₁(1600) in the decay channels:
 - ??
 - ?'?
 - b₁(1235)?

M_{?'?}=(1610?20) MeV, ?_{?'?} =(290?30) MeV

Hybrids in the vector sector

- Existence confirmed for ?'(1600) which can be a composite object, formed by ?(1450)? ?(1700)
 - Observed at CMD Novosibirsk and CLEO in e⁺e⁻? 4?
 - They have isoscalar counterparts in ? (1420), ? (1650) and ?(1680)
 - Are all of them radial excitations?
 - If so, their width is incompatible with expectations from ³P₀ model
 - ?: ?(2³S₁? a₁?, h₁?) ? 1-3 MeV: too small
 - ?:?(1³D₁? a₁?, h₁?)? 105 MeV: consistent with ³P₀
 - $a_1?? ?^+?^-?^+?^- and ?^+?^-2?^0$ while $h_1?? ?^+?^-2?^0$ only:
 - one would expect ? (e+e-? ?+?-?0?0) > ? (e+e-? ?+?-?+?-) which is contrary to experimental observation:

below 1.6 GeV: 2? (e^+e^- ? ? $?^+?^-?^0?^0$) ? ? (e^+e^- ? ? $?^+?^-?^+?^-$)

- SIGNATURE OF NEW PHYSICS? qqg state?
 - In this mass range the dominant hadronic decay channel of the vector hybrid $?_{\rm H}$ is expected to be a_1 ?

Conclusions

• Scalar glueball:

 the f₀(1500) is a good candidate as a glueball due to its many decay channels, observed by several experiments in different reactions

• 1⁻⁺ hybrid:

 the presence of at least one hybrid meson decaying into ?? at 1.6 GeV seems confirmed, as it had been observed in different reactions – several confirmations also for the state observed at 1.4 GeV

• 1⁻⁻ hybrid:

Hints at the possible identification of ?'(1600) with a vector hybrid, due its preferred decay channel into a₁?