

Short status report of the nucleon time like form factors measurements

Alessandro De Falco
Dipartimento di Fisica and I.N.F.N.
Cagliari, Italy

OUTLINE

- Introduction
- Proton time-like form factors:
$>$ near threshold
$>$ large q^{2}
- Neutron time-like form factors

PS170 (CERN)
E835 (FNAL)

FENICE (FRASCATI)

- Narrow structure in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons near NN threshold and related measurements

FENICE
BES
BELLE

Nucleon E.M. Form Factors

- Low Q^{2}
$>$ charge distribution magnetization current
- High Q 2
> valence quark distribution
- Crucial test of QCD from the non perturbative regime (near threshold) to perturbative regime (large Q^{2})

SPACE-LIKE REGION

- Study of the reaction $e^{-p} \rightarrow e^{-} p$
- Rosenbluth cross section:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{R}=\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}\left[\frac{\mathrm{G}_{\mathrm{E}}^{2}+\tau \mathrm{G}_{\mathrm{M}}^{2}}{1+\tau}+2 \tau \mathrm{G}_{\mathrm{M}}^{2} \tan \left(\frac{\theta}{2}\right)\right] \\
& \tau=-q^{2} / 4 m_{p}^{2} \\
& G_{E}=F_{1}+\frac{q^{2}}{4 m^{2}} F_{2} \quad G_{M}=F_{1}+F_{2}
\end{aligned}
$$

- The FF in the space-like region are real
- Dipolar behaviour and scaling at low $\mathrm{Q}^{2}\left(<10 \mathrm{GeV}^{2}\right)$??

$$
G_{E}=G_{M} / \mu_{p}=\left(1+\frac{\left|Q^{2}\right|}{\Lambda^{2}}\right)^{-2}
$$

TIME-LIKE REGION

- Study of the reactions $\mathrm{e}^{+} \mathrm{e}^{-} \leftrightarrow \mathrm{N} \overline{\mathrm{N}}$
- Differential cross section

$\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 Q^{2}}\left[\left|G_{M}\left(Q^{2}\right)\right|^{2}\left(1+\cos ^{2} \theta^{*}\right)+\frac{4 m_{p}^{2}}{Q^{2}}\left|G_{E}\left(Q^{2}\right)\right|^{2} \sin ^{2} \theta^{*}\right]$
$>$ at threshold $\mathbf{G}_{\mathrm{E}}=\mathrm{G}_{\mathrm{M}}$ (uniform angular distribution)
$>$ At $\mathrm{Q}^{2} \gg 4 \mathrm{~m}_{\mathrm{p}}^{2}, \mathrm{G}_{\mathrm{E}}$ contribution negligible
- Complex form factors
- Relative phase can be determined measuring the polarization of the outgoing p
- at large $\mathrm{Q}^{2} \quad(\mathrm{QCD}$, analyticity $) \mathrm{G}\left(\mathbf{Q}^{2}\right)=\mathrm{G}\left(-\mathrm{Q}^{2}\right)$
- According to pQCD simplest expectations:

$$
\left|\frac{G_{M}^{n}}{G_{M}^{p}}\right|^{2} \approx\left(\frac{q_{d}}{q_{u}}\right)^{2}=0.25
$$

- Any prediction where the nucleon is mostly represented in terms of valence quarks should hardly foresee $\mathbf{G}_{\mathbf{M}}{ }^{\mathbf{n}}>\mathbf{G}_{\mathrm{M}}{ }^{\mathbf{p}}$

PROTON FORM FACTOR (LOW Q 2)

PS170 exp. (CERN)
Nucl.Phys.B 411 (1994), 3

- $\quad \overline{\mathbf{p}} \mathbf{p} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$from threshold to $\mathrm{E}_{\mathrm{CM}} \cong 2 \mathrm{GeV}$ at LEAR
- Selection of $\mathrm{e}^{+} \mathrm{e}^{-}$pairs in high hadronic background
> threshold Čerenkov counter + shower detector
- Two body reconstruction
> tracking system (MWPC, drift tubes)

- About $2000 \mathrm{e}^{+} \mathrm{e}^{-}$events above threshold

PROTON FORM FACTOR (LOW \mathbf{Q}^{2})

Rapid fall just above threshold
Hint for a decrease with energy of the ratio $\frac{\left|G_{E}{ }^{p}\right|}{\left|G_{M}{ }^{p}\right|}$?

PROTON FORM FACTOR (HIGH Q²)

E835 exp. (FNAL)

- E835 study the charmonium spectroscopy in $\overline{\mathrm{p}}$ p annihilations into electromagnetic final states:

$$
\bar{p} p \rightarrow J / \psi \rightarrow e^{+} e^{-}+X \quad \bar{p} p \rightarrow \gamma \gamma
$$

- Ideal for study of form factors as well, through the reaction $\overline{\mathrm{p}} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
$>$ High Q^{2}, but cross section still detectable
$>$ High luminosity
$>$ Efficient reconstruction of $\mathrm{e}^{+} \mathrm{e}^{-}$ pairs with high invariant mass
> Low background level

PROTON FORM FACTOR (HIGH Q²)

The dashed line is the pQCD fit.
The dot-dashed line represents the dipole behavior of the form factor in the space-like region for the same values of $|\mathrm{Q}|^{2}$.

The expected $|\mathrm{Q}|^{2}$ behaviour is reached quite early, however there is a factor of 2 between timelike and spacelike data measured at the same $|\mathrm{Q}|^{2}$.

NEUTRON FORM FACTOR
 FENICE exp. (Frascati) Nucl.Phys.B 517 (1998), 3

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{n} \overline{\mathrm{n}}$ from threshold to $\mathrm{E}_{\mathrm{CM}} \cong 2.5 \mathrm{GeV}$ at ADONE (Frascati)
- Antineutron annihilation in nuclei: many prong event ("star topology")
$>$ iron converters + limited streamer tubes (tracking)
- Low antineutron velocity \rightarrow hodoscopes for TOF measurement
- Low luminosity
\rightarrow shield against cosmic ray background

- Antineutron identification \rightarrow isolated annihilation star $+\beta$ measurement
- Neutron detection efficiency $\sim 10 \%$ at $2 \mathrm{GeV} \rightarrow$ no signal from neutron required

NEUTRON FORM FACTOR

$\mid \mathrm{G}^{\mathrm{p}} / 2$

$$
\int L d t \approx 0.4 p^{-1} \quad 74 \text { events }
$$

$$
\left|G_{M}^{n}\right|>\mid G_{M}^{p}
$$

NEUTRON
 ANGULAR DISTRIBUTION

From the fit of the angular distribution with the function $\mathrm{A}\left(1+\cos ^{2} \theta\right)+\mathrm{B} \sin ^{2} \theta$ hint for

$$
\left|G_{E}{ }^{n}\right| \ll\left|G_{M}{ }^{n}\right|
$$

$\cos (v)$

OTHER BARYONS FORM FACTORS

- Only one measurement for the Λ with poor statistics (4 events)
- No measurement for other baryons

PROTON FORM FACTOR AND TOTAL HADRONIC CROSS SECTION

Narrow vector resonance interfering with the background given by broad resonances can generate the dip in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

$$
\begin{aligned}
& \mathrm{M}=(1.87 \pm 0.01) \mathrm{GeV} \\
& \Gamma=(10 \pm 5) \mathrm{MeV}
\end{aligned}
$$

BES results

Study of the $\mathrm{J} / \Psi \rightarrow \overline{\mathrm{p}} \mathrm{p} \gamma$ decay at theBejing $\mathrm{e}^{+} \mathrm{e}^{-}$collider with a large solid angle magnetic spectrometer
Events with a high energy γ and 2 opposite sign tracks selected

FIG. 4. The background-subtracted, acceptance-corrected $\left|\cos \theta_{\gamma}\right|$ distribution for $J / \psi \rightarrow \gamma p \bar{p}$-enriched events with $M_{p \bar{p}} \leq 1.9 \mathrm{GeV} / c^{2}$. The solid curve is a fit to a $1+\cos ^{2} \theta_{\gamma}$ shape for the region $\left|\cos \theta_{\gamma}\right| \leq 0.8$; the dashed curve is the result of a fit to $\sin ^{2} \theta_{\gamma}$.

Angular distribution consistent with that expected for a resonance with $\mathrm{J}^{\mathrm{PC}}=0^{-+}$or

$$
\mathrm{J}^{\mathrm{PC}}=0^{++}
$$

The mass distribution is
fitted with a $\mathrm{f}_{\text {BKG }}+$ a Breit Wigner with
$\mathrm{M}=1876.4 \pm 0.9 \mathrm{MeV}$
$\Gamma=4.6 \pm 1.8 \mathrm{MeV}$

Results from Belle

$$
\bar{B}^{0} \rightarrow D^{(*) 0} p \bar{p}
$$

$$
B^{ \pm} \rightarrow p \bar{p} K^{ \pm}
$$

CONCLUSIONS AND OPEN ISSUES

- $\left|\mathrm{G}_{\mathrm{M}}{ }^{\mathrm{n}}\right|>\left|\mathrm{G}_{\mathrm{M}}{ }^{\mathrm{p}}\right|$
- $\left|G_{E}{ }^{n}\right| \ll\left|G_{M}{ }^{n}\right|$?
- Steep threshold behaviour
- Resonant structures
- High Q^{2} predictions
- Present/future measurements at BaBar:
$>\mathrm{p} \overline{\mathrm{p}}$: Data collected (statistics $\sim 10 \mathrm{ev} / 10 \mathrm{MeV}$ bin) \checkmark Separation between G_{E} and G_{M} ? \checkmark No measurement of relative phase possible
$>\mathrm{n} \overline{\mathrm{n}}$: measurement not possible (trigger/background rejection)
$>\Lambda \bar{\Lambda}$: measurement not possible (small cross section and trigger)?
High statistics samples with a good measurement of the polar angle distributions are needed to disentangle the contributions of $G_{E}{ }^{p}, G_{M}{ }^{p}, G_{E}{ }^{n}, G_{M}{ }^{n}$

