INTERACTION REGION DESIGN: PRELIMINARY CONSIDERATIONS

M. E. Biagini, LNF-INFN
Workhop on $\mathrm{e}+\mathrm{e}$ - in the $1-2 \mathrm{GeV}$
Physics and Accelerator Prospects

OUTLINE

- IR design constraints \& requirements
- Crossing angle
- Parasitic Crossings
- Tune shifts and luminosity with crossing angle
- IR design layout \& parameters
- IR flexibility
- To do list

IR Design Requirements (Machine \& Detector)

- Maximum detector solid angle, try to keep accelerator components far enough away from the IP (D)
- Large high-field solenoid (KLOE, FINUDA-like) (D)
- Push Q1 close to IP, to minimize IP spot size (M)
- Horizontal crossing angle (M) (DAФNE experience)
- Small quadrupoles, embedded in detector field (M,D)
- Coupling correction (M) (DAФNE experience)
- Adequate shielding from Touschek background (M, D)
- Ultra-vacuum (M,D)
- Impedance budget (M)
- Thin beam pipe (D)
- "Instrumented" IR (D)

The IR design is a common Machine \& Detector business !!

Crossing angle

- The crossing angle option allows for larger collision frequency (smaller bunch spacing)
- It allows to have the beams "naturally" separated (no need of dipoles close to IP) and to be soon accomodated in 2 separate rings
- However this solution has some side effects:
- Large angles can induce synchro-betatron resonances in the beams (Piwinski criterion)
- Unwanted beam interactions at Parasitic Crossings
- Effect of off-axis trajectories in quadrupoles and solenoids on the beam optics have to be evaluated
- Luminosity and tune shifts are affected: $L \downarrow, \xi \downarrow$ (for same number of particles)

The crossing angle value has to be carefully chosen!!

Crossing angle (cont'd)

- Minimum crossing angle:
to allow a $20 \sigma_{x}$ distance between the 2 beam cores at $1^{\text {st }} \mathrm{PC}(0.3 \mathrm{~m}$ from IP) $\rightarrow 15$ mrad
- Maximum crossing angle:
dictated by the requirement of $a \pm 9^{\circ}$ cone solid angle (present design at DAФNE)
$\rightarrow 50 \mathrm{mrad}$ (assuming a pm QD at 0.2 m from IP, with 2 cm thick material, and a $10 \sigma_{x}$ clearance)
- Piwinski angle: parameter of how harmful is the crossing angle:

$$
\begin{gathered}
\Theta=\theta \sigma_{l} / \sigma_{x} \quad(\theta=\text { half crossing angle }) \\
0.18(\theta=15 \mathrm{mrad}) \rightarrow 0.6(\theta=50 \mathrm{mrad}) \\
(D A \Phi N E=0.29, \text { KEK }-B=0.57)
\end{gathered}
$$

Parasitic Crossings Effec \dagger

The unwanted beam interaction at the PCs has 2 effects:

- x and y tune shifts are induced, similarly to the main IP, depending on the beam separation at the PC
- beam lifetime is affected, if the separation is lower than $10 \sigma_{x}$

$$
\begin{array}{ll}
\xi_{x}=-\frac{N r_{e}}{2 \pi \gamma} \frac{\beta_{x}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} & \begin{array}{l}
\text { x, y }=\text { beam separation at PCs } \\
\text { Gaussian beam distribution }
\end{array} \\
\xi_{y}=+\frac{N r_{e}}{2 \pi \gamma} \frac{\beta_{y}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} &
\end{array}
$$

J. Jowett, Handbook of Accelerator Physics and Engineering: Beam-beam tune shifts for gaussian beams

Parasitic Crossings (cont'd)

Vertical tune shift due to PCs for a 30 mrad half crossing angle: the $1^{\text {st }}$ PC tune shift is 1% of the IP tune shift. The other PCs have no effect. The horizontal tune shift is a factor 20 lower. The separation at the $1^{\text {st }} P C$ is $20 \sigma_{x}$

Tune shift at PCs

10-13 September 2003
Alghero

Parasitic Crossings (cont'd)

- 1st PC tune shifts (logaritmic y scale, PC tune shift counts twice)
- $15 \mathrm{mrad}: \xi_{y}{ }^{\text {PC }} 9 \%$ of $\xi_{y}{ }^{\text {IP }}$
- $30 \mathrm{mrad}: \xi_{y}{ }^{\mathrm{PC}} 2 \%$ of $\xi_{y}{ }^{\mathrm{IP}}$
- $50 \mathrm{mrad}: \xi_{y}{ }^{\mathrm{PC}} 1 \%$ of $\xi_{y}{ }^{\mathrm{IP}}$

Luminosity \&tune shifts with crossing angle

$$
L=\frac{N^{2}}{4 \pi \sigma_{y} \sqrt{(\underbrace{\left(\sigma_{z}^{2}+g^{2}(\theta / 2)\right.}+\sigma_{x}^{2})}}
$$

$$
\begin{aligned}
& \xi_{x}=\frac{r_{e} N}{2 \pi \gamma} \frac{\beta_{x}}{\sqrt{\left(\sigma_{z}^{2} \operatorname{tg}^{2}(\theta / 2)+\sigma_{x}^{2}\right)}\left(\sqrt{\left(\sigma_{z}^{2} \operatorname{tg}^{2}(\theta / 2)+\sigma_{x}^{2}\right)}+\sigma_{y}\right)} \\
& \xi_{y} p=\frac{r_{e} N}{2 \pi \gamma} \frac{\beta_{y}}{\sigma_{y}\left(\sqrt{\left(\sigma_{z}^{2} \operatorname{tg}^{2}(\theta / 2)+\sigma_{x}^{2}\right)}+\sigma_{y}\right)}
\end{aligned}
$$

For $\gamma \gg \operatorname{tg}(\theta / 2) . \sigma_{z}=$ bunch length, $\theta=$ crossing angle
P. Raimondi, M. Zobov, "Tune shift in beam-beam collisions with
a crossing angle", DAFNE Tech. Note G-58, Apr. 2003

Luminosity with crossing angle

Luminosity reduction, due to the crossing angle, versus β_{x}.

10-13 September 2003

Alghero

Tune shifts with crossing angle (cont'd)

Tune shifts reduction, due to crossing angle, vs. $\beta_{x}{ }^{*}$ for different crossing angles. Horizontal ξ drops faster. Beam footprint is smaller, we can increase L by increasing the current.

10-13 September 2003
Alghero

Conclusions on crossing angle choice

The crossing angle should be chosen by considering:

IR Layout

- Try to separate the beamlines asap
- Whole IR is 10 m long, quads are 0.2 m long
- IR solid angle: cone $\pm 9^{\circ}$
- QD1 and QF2 need to be pm type, QD3 could be em
- SC quads ???
- Preliminary design with:
- horizontal half crossing angle: 30 mrad
- two quadrupole triplets DFD
- QD1 at 0.2 m from IP, shared by both beams (beams are off-axis in this quad)
- QF2 : on separate beamline ($x_{\text {sep }} \sim 14 . \mathrm{cm}$, beam is on-axis)
- QD3 : on separate beamline ($x_{\text {sep }} \sim 60 . \mathrm{cm}$, beam is on-axis)

Half-IR Layout

Top view (not on scale)

Exercise

5 m
With $\pm 10 \sigma_{x}$ clearance, $\pm 9^{\circ}$ cone, $\pm 30 \mathrm{mrad}$ angle:
QD1: $L=20 \mathrm{~cm}$, pole radius $=1.5 \mathrm{~cm}, R_{e x t}=3 \mathrm{~cm}, \mathrm{pm}$ thickness $=1.5 \mathrm{~cm}$ small § QF2: $L=20 \mathrm{~cm}$, pole radius $=11 \mathrm{~cm}, R_{\text {ext }}=16 \mathrm{~cm}, \mathrm{pm}$ thickness $=1.5 \mathrm{~cm}$, 4 cm space between 2 quads
QD3: $L=20 \mathrm{~cm}$, pole radius $=15 \mathrm{~cm}, R_{\text {ext }}=63 \mathrm{~cm}, 25 \mathrm{~cm}$ space between 2 quads

IR Beam Parameters (preliminary)

- Horizontal $\beta^{*}=50 \mathrm{~cm}$
- Vertical $\beta^{*}=4 \mathrm{~mm}$, given the present estimate on the bunch length (3.8 mm)
- Horizontal crossing angle $= \pm 30 \mathrm{mrad}$
- First parasitic crossing at 30 cm from IP
- Beams separation at the IR end is 74 cm

Half-IR Optical Functions

Half-IR One Beam Trajectory

IR Flexibility

- Checked IR flexibility versus $\beta_{y}{ }^{*}$ change (1.5 mm to 5 mm)
- Low- β : keeping same quads strengths. β_{y} at the IR end (0.7 to 2 m), easily matchable with cell quads or with QD3.
$\beta_{y}{ }^{*}=4 \mathrm{~mm}$ is red line

Coupling correction

- Depends on detector field. Needs 8 parameters to decouple whole IR matrix.
- DAФNE scheme (all 6 IR quads embedded in B_{s}): 2 compensating solenoids +6 quadrupole tilts + skew quadrupoles outside IR (fine adjustments)
- New IR scheme (4 IR quads embedded in B_{s}):

2 compensating solenoids +4 quadrupole tilts + 1 skew quadrupole in IR (can be a tilt in QD3) + skew quadrupoles outside IR (fine adjustments)

To Do List (practically everything...)

- Technical design
- Engineering studies of pm quads
- Chromaticity correction study
- Coupling correction scheme
- Background evaluation
- Beam pipe design
- Vacuum design
- Impedance budget
- Trapped HOM study
- Temperature control

