

Investigation of the electron electromagnetic field in a shadow area

G.A. Naumenko, A.P. Potylitsyn, L.G. Sukhikh, Yu.A. Popov

Physical and technical institute of Tomsk polytechnic university

Tomsk, Russia

About the problem

Shadowing effect

half-naked electron, semi-bare electron, radiation formation zone

E.L. Feĭnberg Sov. Phys. Uspekhi, 22 (1979) 479-479. **X. Artru**, NIM B 266 (2008) 3725.

- N.F. Shul'ga and V.V. Syshchenko. Journal Physics of Atomic Nuclei, 63, 11, (2000), 2018
- **B. M. BolotovskiI**. Preprints of Lebedev Institute of Physics, Russian Academy of Sciences, Vol 140 p. 95

Viewpoints:

Surface current viewpoint

(Interference of the forward DR (TR), emitted by induced surface current, with electron field)

Absorber or conductive screen

In paper

"G Naumenko, A. Potylitsyn et. al. Journal of Physics: Conference Series 236 (2010) 012024" was shown that

no surface current is induced on a downstream surface of a screen.

Surface current viewpoint is not applicable for this problem

Electron field must be reflected from a conductive screen,
It doesn't penetrate through thick conductive screen or absorber,
It doesn't induce a surface current on the downstream surface of a screen
Therefore we may expect the semibare electron just downstream to the screen

Can we observe this effect experimentally ?

Possible scheme of experiment

We should use a model for electromagnetic field evolution from screen to beam dump without acceleration (starting and stopping of electron).

Theory

Field of moving electron:

$$\vec{E} = \frac{e}{\left(R - \vec{\beta}\vec{R}\right)^3} \left\{ \left(1 - \beta^2\right) \left(\vec{R} - \vec{\beta}R\right) + \vec{R} \times \left(\vec{R} - \vec{\beta}R\right) \times \vec{\beta}' \right) \right\} \quad \text{, here } C = 1$$

In Fourier presentation in terms of the retarded time:

$$\vec{E}_{\omega} = \int_{0}^{L/\beta} \frac{e \cdot (1 - \beta^2) \cdot (\vec{R} - \vec{\beta}R)}{(R - \vec{\beta}R)^3} \cdot e^{i\omega(t'+R)} \frac{\partial t}{\partial t'} dt'$$

t is the retarded time t = t' + R(t') Transversal component in case of axial symmetry:

$$\vec{E}_{\omega}^{\perp} = \int_{0}^{L/\beta} \frac{e \cdot (1 - \beta^2) \cdot r}{\left(R - \beta R_{\beta}\right)^3} \cdot e^{i\omega(t' + R)} \frac{\partial t}{\partial t'} dt'$$

 $\vec{\beta}' = 0$

r is transversal coordinate of the observation point

Tomsk microtron Electron Beam

Beam parameters

Formation length

$$\frac{\gamma^2 \lambda}{4} \approx \frac{12^2 \cdot 11 \ mm}{4} = 0.4 \ m$$

Electron field size

$$E_{\lambda} = 2\gamma\lambda$$

$$\gamma\lambda \approx 12 \cdot 11 \ mm = 130 \ mm$$

Detector parameters :

The room temperature detector DP20M Tomsk (Russia) production.

Detector efficiency in the wavelength region $\lambda=3\sim16$ mm is certificated as a constant with accuracy $\pm 15\%$

Fig.4 Dependence of the squared form-factor module on the radiation wavelength for the gaussian longitudinal distribution of electrons in a bunch.

Wavelength range: = 3 ~ 16 mm, sensitivity = 0.3 V/mWatt

Parabolic telescope was used for angular distribution measurement to exclude the "pre-wave" zone effect contribution.

(B.N. Kalinin, G.A. Naumenko, A.P. Potylitsyn et al, JETP Letters, 84, 3, (2006), p. 110.)

Measurements

Absorbed screen

The dependence was measured with the step $\Delta L = 20mm$

Typical measured angular distribution

We see the recovery of electron field when the distance between screen and beam dump increase.

Conductive screen

Angular distribution of EM field in far field zone for different distance from screen to beam dump

Total experimental no smoothed dependence

Let's remind you the theoretical dependence

Step $\Delta L = 10mm$

You can see that these dependences are very close

Resume

1. Both the absence of a surface current on a downstream conductive screen surface and the similarity of dependences from absorbed and conductive screens allows us to be ensure that we observe the semi-bare electrons just downstream to the screen.

-25

- 2. The further evolution is the recovery of the Coulomb field of semi-bare electron to the state of usual electron.
- 3. Semi-bare electron properties were investigated experimentally in macroscopic mode

